STOR 665: Applied Statistics II

About the Course

See the syllabus for details. Topics covered by this course include but are not limited to:

  1. GLM basics: exponential families, link functions, likelihood, quasi-likelihood, conditional likelihood.
  2. Machine Learning: linear models, optimization, kernel methods.
  3. Deep Learning: MLP, CNN, RNN, Generative models.
  • Instructor: Yao Li

  • Teaching Assistant: Younghoon Kim

  • Class: MW 1:25PM-2:40PM, Hanes 130

  • Office Hours:

    • Instructor Office Hours: W 3:00PM-4:00PM; by appointment; Hanes 334.
    • TA Office Hours: TTH 11:00AM-12:00PM; Hanes B-4.

Course Material

Date Lecture Lab
Jan. 9 Welcome and Preliminary
Jan. 11 Likelihood
Jan. 16 Holiday
Jan. 18 Cancel
Jan. 23 Smoothing Methods
Jan. 25 GLM Bascis Lab 1: Smoothing Method
Jan. 30 GLM Bascis
Feb. 1 GLM Bascis
Feb. 6 MLE and Information Lab 2: Model Selection
Feb. 8 Iterated Weighted Least Squares
Feb. 13 Well-Being Day
Feb. 15 Models for Binary Data
Feb. 20 Multinomial Regression Models
Feb. 22 Models for Count Data I Lab 3: Multinomial Regression
Feb. 27 Models for Count Data II
Bootstrap Inference in GLM
Mar. 1 Constant Coefficient of Variation Models Lab 4: Overdispersion and Zero-Inflation
Mar. 6 Quasi-likelihood
Mar. 8 Mid-term Exam
Mar. 13 Spring Break
Mar. 15 Spring Break
Mar. 20 Overview of Machine Learning Lab 5: Boostrap
Mar. 22 Linear Regression and Classification
Mar. 27 Optimization in ML Lab 6: Python and Pytorch
Mar. 29 Optimization in ML
Apr. 3 Kernel Methods
Apr. 5 Multilayer Perceptron
Apr. 10 Convolutional Neural Networks Lab 7: DNN Training
Apr. 12 Recurrent Neural Networks
Apr. 17 GRU and LSTM
Apr. 19 NLP Pre-training
Apr. 24 Generative Models
Apr. 26 Adversarial Attack

Homework Tracker

All homework assignments are to be submitted via Sakai. Late homework will receive a grade of 0.

Date assigned Instructions Due Date (Time)
Jan. 11 HW1 Jan. 22 (11:55 PM)
Feb. 01 HW2 Feb. 12 (11:55 PM)
Feb. 15 HW3 Feb. 26 (11:55 PM)
Mar. 06 HW4 Mar. 26 (11:55 PM)
Mar. 27 HW5 Apr. 16 (11:55 PM)
Apr. 17 HW6 Apr. 30 (11:55 PM)

Final Project

This course includes a take-home final project in lieu of a final exam.

Reading

This page was last updated on 2023-05-01 16:58:49 Eastern Time.