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Ian Goodfellow

Ian Goodfellow
A renowned researcher in machine learning. He
introduced Generative Adversarial Networks
(GANs) in 2014 while working on his Ph.D. at the
University of Montreal under the supervision of
Yoshua Bengio.

Career
Goodfellow’s contributions to research extend well beyond GANs.
He has worked at OpenAI, Google Brain, and Apple, advancing AI
technology in various fields and was listed as a coauthor on the
seminal Deep Learning textbook.

History - Ian Goodfellow University of North Carolina at Chapel Hill

Generative Adversarial Networks 4/27



History Theory Impact

Ian Goodfellow

Ian Goodfellow
A renowned researcher in machine learning. He
introduced Generative Adversarial Networks
(GANs) in 2014 while working on his Ph.D. at the
University of Montreal under the supervision of
Yoshua Bengio.

Career
Goodfellow’s contributions to research extend well beyond GANs.
He has worked at OpenAI, Google Brain, and Apple, advancing AI
technology in various fields and was listed as a coauthor on the
seminal Deep Learning textbook.

History - Ian Goodfellow University of North Carolina at Chapel Hill

Generative Adversarial Networks 4/27



History Theory Impact

Data Generation Problems

Before GANs, generating data that was both high-quality and
diverse was a significant problem in machine learning. Models like
autoencoders and Boltzmann Machines were commonly used but
were limited in their ability to produce realistic outputs, especially
in high-dimensional data like images.

GANs’ Contribution
GANs introduced a revolutionary approach to high-dimensional
data generation by setting up a competition between two
multi-layer perceptrons - a generator and a discriminator - resulting
in the generation of more realistic data.

History - Challenges Before GANs University of North Carolina at Chapel Hill

Generative Adversarial Networks 5/27



History Theory Impact

Data Generation Problems

Before GANs, generating data that was both high-quality and
diverse was a significant problem in machine learning. Models like
autoencoders and Boltzmann Machines were commonly used but
were limited in their ability to produce realistic outputs, especially
in high-dimensional data like images.

GANs’ Contribution
GANs introduced a revolutionary approach to high-dimensional
data generation by setting up a competition between two
multi-layer perceptrons - a generator and a discriminator - resulting
in the generation of more realistic data.

History - Challenges Before GANs University of North Carolina at Chapel Hill

Generative Adversarial Networks 5/27



History Theory Impact

Data Generation

History - Challenges Before GANs University of North Carolina at Chapel Hill

Generative Adversarial Networks 6/27



History Theory Impact

Pre-GAN Methods

Monte Carlo Markov Chains (MCMC)

Used for sampling data in high-dimensional spaces, but slow and
computationally expensive, especially for images.

Restricted Boltzmann Machines (RBMs)

Popular for unsupervised learning, but struggled with scalability and
training inefficiencies.
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GANs’ Advantage

Why GANs Replaced MCMC and RBMs

• Faster and more scalable: MCMC is slow, requiring many
iterations to sample data. GANs generate data, meaning they
will scale better with large datasets.

• End-to-end differentiability: GANs train both networks
using gradient descent, making training smoother, whereas
RBMs rely on approximations, which complicates training and
slows convergence.

• Better data generation: GANs’ adversarial process leads to
sharper, more realistic images, while MCMC and RBMs
struggle with high-dimensional data like images.
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Intuition

The generative model can be thought of as analogous to a team of
counterfeiters trying to produce fake currency and use it without
detection, while the Discriminative model is analogous to the
police, trying to detect the counterfeit currency.
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Intuition

Counterfeiting Team
(akin to the Generator)

Police
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Generator:
Produces a sample in an attempt to mimic real data

1 The input to the Generator is noise: pz(z)

2 The Generator learns the distribution pg over training data x

3 A mapping to data space is represented as G (z ; θg )

4 G is a differentiable function represented by a multi-layer
neural network with parameters θg

5 G is trained to minimize [log(1 − D(G (z)))]
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Discriminator:
Estimates the probability that a sample came from the real
data.

1 The Discriminator is also a multi-layer neural network with a
single scalar output: D(x ; θd)

2 D(x) represents the probability that x came from the data
rather than pg

3 D is trained to maximize the probability of assigning the
correct label. It has to correctly differentiate between the
training data and the generated samples.
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Optimization

Simultaneous Min-Max Optimization

minG maxD V (D,G ) =
Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1 − D(G (z)))]
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Optimization

The output produced by the generator (Green) slowly starts
to mimic the real training data (Black) after training

iterations.
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Optimization

Global Optimum

This minimax game has a global optimum pg = pdata. This is the
point at which the generator mimics the distribution of the training
data. At this point, the discriminator is unable to differentiate
between the two distributions, so D(x) = 1

2 .
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Training Process

During training, we alternate between k steps of optimizing the
Discriminator (D) and one step of optimizing the Generator (G ).
This process ensures that D is kept close to its optimal solution,
provided that G changes slowly enough.
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Training Process

If the Discriminator guesses correctly, then the Generator is
updated. If the Discriminator guesses incorrectly, then the
Discriminator is updated.
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Training Process
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DCGAN:
Unsupervised Representation Learning with Deep
Convolutional GANs

Overview
DCGAN is an extension of GANs that incorporates convolutional
layers to improve the quality of generated images. It also serves as
a baseline for many image generation tasks.

Impact

Introduced the idea of using convolutional neural networks in GANs
and significantly improved image generation tasks. It has been cited
over 18,000 times to date.

Impact - DCGAN University of North Carolina at Chapel Hill

Generative Adversarial Networks 23/27



History Theory Impact

CycleGAN:
Unpaired Image-to-Image Translation

Overview
CycleGAN enables image translation between domains without
requiring paired datasets. This innovation is useful in tasks such as
style transfer, where images from one domain can be transformed
into another.

Impact

CycleGAN opened new possibilities for unsupervised learning in
image translation. It has been cited 24,000 to date.
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StyleGAN:
A Style-Based Generator Architecture for GANs

Overview
StyleGAN introduced a new generator architecture for GANs that
allows better control over the generated images’ styles at different
resolutions; it’s particularly well known for producing high-quality,
photorealistic faces.

Impact

StyleGAN’s architecture has been widely adopted for generating
highly detailed images. It has been cited over 11,000 times to date.
In fact you may have even seen StyleGAN used before, try visiting
thispersondoesnotexist.com.
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Questions?
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