Deep Residual Learning for Image Recognition

— Yidan Mei, Yinglei Xu

Deep residual learning for image recognition

[PDF] thecvf.com

K He, X Zhang, S Ren, J Sun - ... and pattern recognition, 2016 - openaccess.thecvf.com

... **Deeper** neural **networks** are more difficult to train. We present a **residual learning** framework to ease the training of **networks** that are substantially **deeper** than those used previously. ...

☆ Save 奶 Cite Cited by 234341 Related articles All 65 versions ≫

Revolution of Deep Neural Network

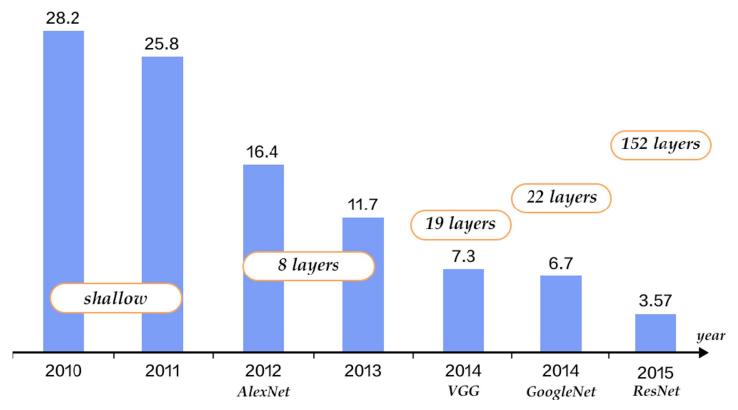
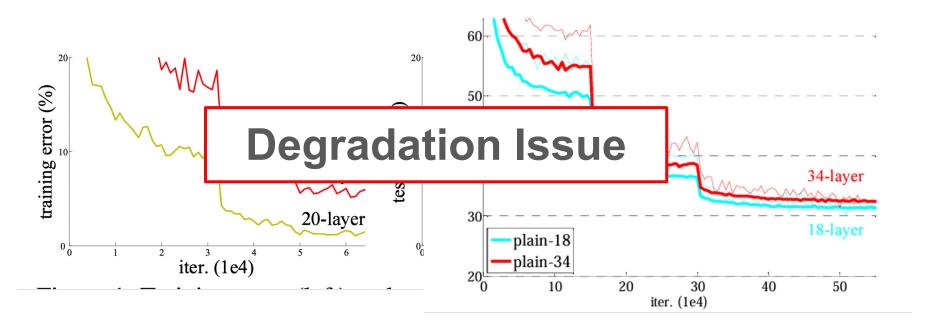


Image Source: http://paddlepaddle.org/

Big Question: Deeper Networks = Better Performance? NO!

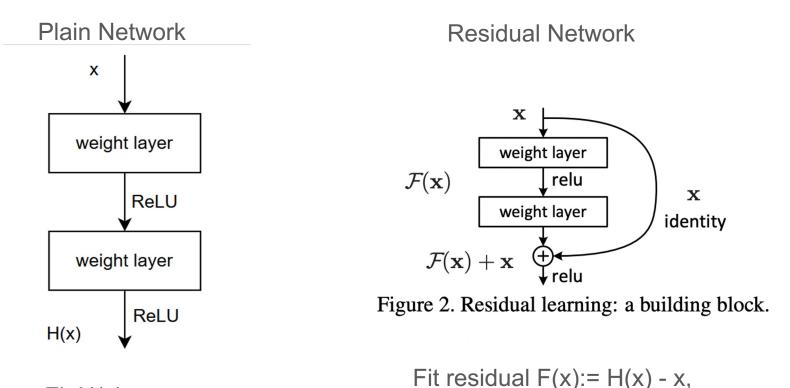


Although solution space of the 18-layer one is a subset of that of the 34-layer one, the deeper network shows higher training error & validation error.

Reasons

- Representational ability? No, deeper networks' solution space include that of shallower networks.
- Overfitting? No, training error also larger.
- Vanishing gradients? No, using BN will prevent it.
- Optimization Difficulty
 - deep plain nets have exponentially low convergence rate → impact the reducing of the training error.

ResNet Architecture: two stacked layers



then recast by H(x) = F(x) + x

Fit H(x)

Why ResNet works?

Hypothesize: Easier to optimize the residual mapping than the original H(x).

- If optimal mapping is H(x) = x, pushing the residual mapping F(x) to 0 will be easier than using two layers to fit H(x)
- more info can be found in <u>https://arxiv.org/abs/1603.05027</u>

Others also said something about weight initialization using Gaussian distribution \rightarrow hard to fit identity

Skipping those identity mapping layers \rightarrow work similarly as a shallower network

Shortcut Connection

- shortcut connections: are those skipping one or more layers. (e.g., the shortcut connections simply perform identity mapping(X → X) in the picture
 - 1. Identity shortcut: x, F same dims

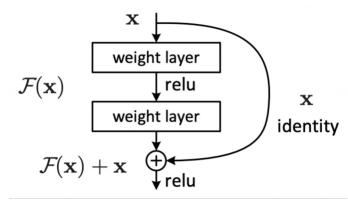
$$\mathbf{y}\,=\,\mathcal{F}\left(x,\,\left\{W_{i}
ight\}
ight)\,+\,\mathbf{x}$$

1. Projection shortcut: x , F different dims

 $\mathbf{y}\,=\,\mathcal{F}\left(x,\,\left\{\mathcal{W}_{i}
ight\}
ight)+\mathcal{W}_{s}\mathbf{x}$

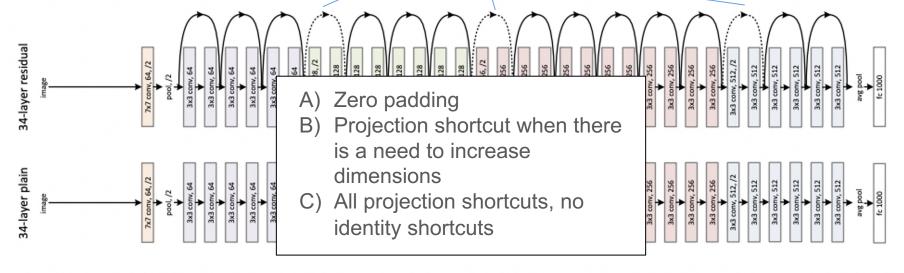
- Will compare different shortcut options in Results
- if F has only 1 layer: similar to linear layer
 y = W_1 x + x, NO advantages

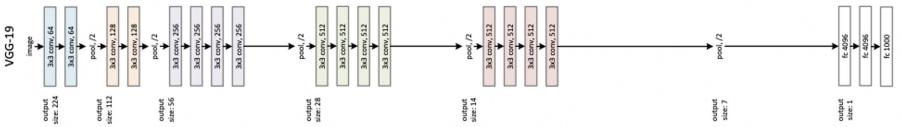
$$\mathbf{y} = W_i \mathbf{x} + \mathbf{x}$$



Architecture

Increase dimensions by option A/B/C





Constructing Deeper Layers: Bottleneck Building Block

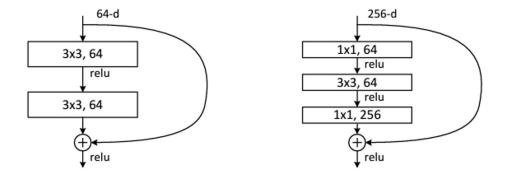


Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

- Reason: limited training time authors could afford
- ResNet-50: replace each 2-layer block in ResNet-34 with the 3-layer bottleneck block.
- Parameter-free identity mapping is important in bottleneck

Results

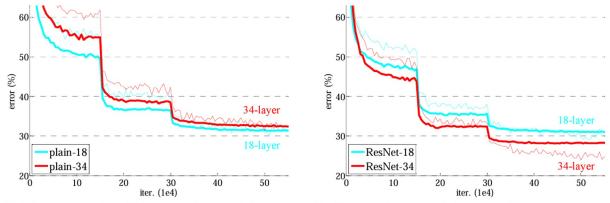


Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

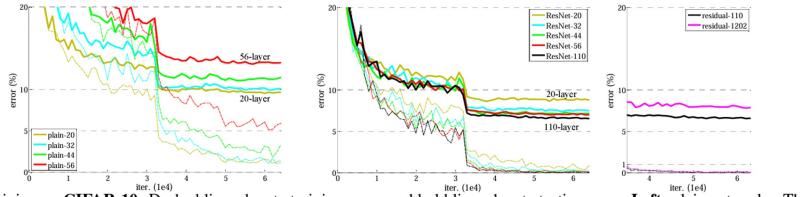


Figure 6. Training on **CIFAR-10**. Dashed lines denote training error, and bold lines denote testing error. **Left**: plain networks. The error of plain-110 is higher than 60% and not displayed. **Middle**: ResNets. **Right**: ResNets with 110 and 1202 layers.

Results Continu

				method		top-1 err.	top-5 err.
-					VGG [41] (ILSVRC'14)		8.43 [†]
Results Continued				GoogLeNet [44] (ILSVRC'14)		-	7.89
					VGG [41] (v5)		7.1
		PReLU-net [13]		21.59	5.71		
method					error (%)	21.99	5.81
model	top-1 err.	Maxout [10]		9.38	21.84	5.71	
VGG-16 [41]	28.07	NIN [25] 8.81			21.53	5.60	
GoogLeNet [44]	-				8.22	20.74	5.25
PReLU-net [13]	24.27		# layers	# params		19.87	4.60
plain-34	28.54	FitNet [35]	19	2.5M	8.39	19.38	4.49
ResNet-34 A	25.03	Highway [42, 43]	19	2.3M	7.54 (7.72±0.16)	lel results on the ImageN test set). top-5 err. (test)	
ResNet-34 B	24.52	Highway [42, 43]	32	1.25M	8.80		
ResNet-34 C	24.19	ResNet	20	0.27M	8.75		7.32
ResNet-50	22.85	ResNet	32	0.46M	7.51		6.66
ResNet-101	21.75	ResNet	44	0.66M	7.17		6.8
ResNet-152	21.43	ResNet	56	0.85M	6.97		4.94
Table 3. Error rates (%, 10-crop testing) of VGG-16 is based on our test. ResNet-50/1 ¹ that only uses projections for increasing dir		ResNet	110	1.7M	6.43 (6.61±0.16)		4.82
		ResNet	1202	19.4M	7.93	3.57	

Table 6. Classification error on the CIFAR-10 test set. All methods are with data augmentation. For ResNet-110, we run it 5 times

3. The top-5 error is on the he test server.

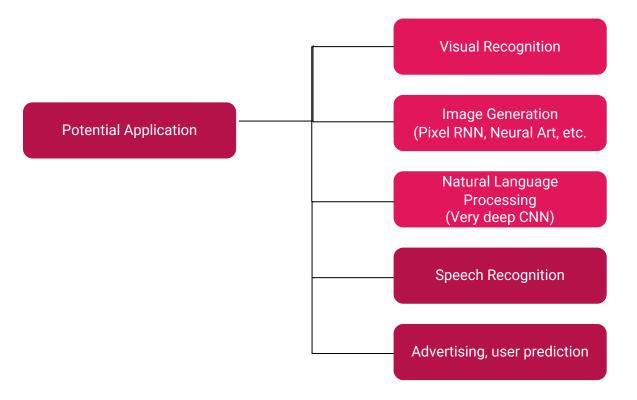
Compare different sho and show "best (mean±std)" as in [43]. options

projection shortcut not essential for degradation

Fewer parameters than other networks

ensemble results (152)

Application of ResNet



Main takeaways:

- Residual networks consistently outperformed plain networks, especially as depth increased.
- ResNet models effectively addressed the degradation problem, enabling deeper architectures to maintain or improve accuracy.
- ResNet has fewer parameters and lower complexity than other networks
- The ResNet framework generalizes well across various tasks and datasets, including classification, detection, and localization. (Table 7 & 8 if interested)

ResNet @ ILSVRC & COCO 2015 Competitions

1st places in all five main tracks

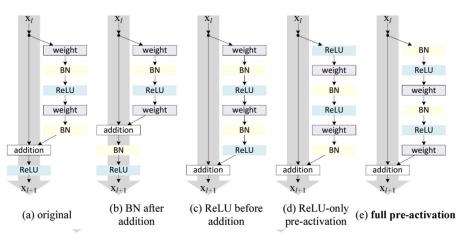
- ImageNet Classification: "Ultra-deep" 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

Why Identity Mapping? (https://arxiv.org/abs/1603.05027)

- shortcut connections are the most direct paths for the information to propagate.
- Other manipulations (scaling, gating...) on the shortcuts hampers the propagation → optimization problems
- Also proposed a pre-activation design → decrease test error for deeper networks

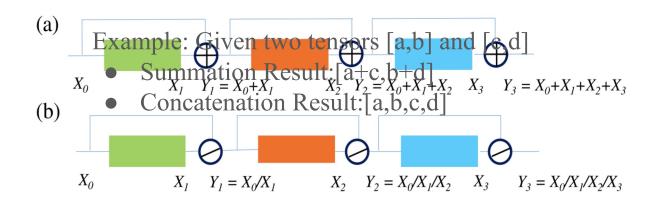
Table 2. Classification error (%) on the CIFAR-10 test set using different activation functions.

case	Fig.	ResNet-110	$\operatorname{ResNet-164}$	
original Residual Unit [1]	Fig. $4(a)$	6.61	5.93	
BN after addition	Fig. 4(b)	8.17	6.50	
ReLU before addition	Fig. $4(c)$	7.84	6.14	
ReLU-only pre-activation	Fig. 4(d)	6.71	5.91	
full pre-activation	Fig. $4(e)$	6.37	5.46	



New State-of-Art? ResNet vs. DenseNet

- Drawback of identity shortcuts: limit representation capacity
- ResNet (a) uses summation (identity shortcuts), while DenseNet uses concatenation (dense connections).



Thank You!

Reference

- https://www.youtube.com/watch?v=C6tLw-rPQ2o
- https://github.com/KaimingHe/deep-residual-networks?tab=readme-ov-file
- https://medium.com/visionwizard/object-segmentation-4fc67077a678
- https://medium.com/@siddheshb008/vgg-net-architecture-explained-71179310050f
- <u>https://www.researchgate.net/publication/374484296_A_Fruit_Ripeness_Detection_Met_hod_using_Adapted_Deep_Learning-based_Approach#pf3</u>
- <u>https://arxiv.org/abs/1603.05027</u>
- <u>https://openaccess.thecvf.com/content/WACV2021/papers/Zhang_ResNet_or_DenseNet_et_Introducing_Dense_Shortcuts_to_ResNet_WACV_2021_paper.pdf</u>