BERT

(BI-DIRECTIONAL ENCODER REPRESENTATIONS FROM TRANSFORMERS)

HAPPY 6TH BIRTHDAY BERT!!

2018 IN MACHINE LEARNING AND NLP

BERT VS OPEN AI GPT VS ELMO

PRE-BERT: ELMO (EMBEDDINGS FROM LANGUAGE MODEL)

Generates contextual word embeddings, meaning the same word can have different meanings depending on the sentence.

Train Separate Left-to-Right and Right-to-Left LMs

PRE-BERT: OPENAI GPT

A language model that reads text in one direction (left-to-right) using a deep Transformer decoder architecture.

BERT VS OPEN AI GPT VS ELMO

FINE-TUNING APPROACH

BERT uses a deep Transformer encoder and is designed to be fine-tuned for specific tasks.

Key Feature: It learns word representations using **bidirectional context**, meaning it looks at both the words before and after a target word.

- Why? Understanding both left and right contexts helps clarify word meaning.
- **Example 1:** "We went to the river bank." (Here, 'bank' refers to the river's edge.)
- **Example 2:** "I need to go to the bank to make a deposit." (Here, 'bank' refers to a financial institution.)

BIDIRECTIONAL CONDITIONING

INDIRECTLY SEE ITSELF IN MULTI-LAYERED CONTEXT?

MASKED LANGUAGE MODELING (MLM)!

Solution: Mask out k% of the input words, and then predict the masked words

the man went to the [MASK] to buy a [MASK] of milk

k: usually 15%

- Too much masking \rightarrow not enough context
- Too little masking → computationally expensive

MLM (CONTINUED)

Selection of masked tokens:

- 15% are uniformly sampled.
- 80–10–10 Corruption
 - 10% are unchanged.

Let's go to the bank's ATM \rightarrow Let's go to the bank's ATM

 \rightarrow Always biased to the correct selection.

• 10% are replaced with a random word in the vocabulary.

Let's go to the bank's ATM \rightarrow Let's go to the boo ATM

• 80% of predicted words are replaced with the [MASK] token.

Let's go to the bank's ATM \rightarrow Let's go to the [MASK] ATM

BERT's clever language modeling task masks 15% of words in the input and asks the model to predict the missing word.

HANDLING RELATIONSHIPS BETWEEN MULTIPLE SENTENCES:

TWO SENTENCE TASKS GIVEN TWO SENTENCES A AND B, IS B LIKELY TO BE THE SENTENCE That follows a or not?

NEXT SENTENCE PREDICTION (NSP)

NSP is designed to reduce the gap between pre-training and fine-tuning

```
[SEP]: a special token used
       [CLS]: a special token
                                             to separate two segments
       always at the beginning
Input = [CLS] the man went to [MASK] store [SEP]
         he bought a gallon [MASK] milk [SEP]
Label = IsNext
Input = [CLS] the man [MASK] to the store [SEP]
         penguin [MASK] are flight ##less birds [SEP]
Label = NotNext
```

They sample two contiguous segments for 50% of the time and another random segment from the corpus for 50% of the time

actually uses WordPieces as tokens rather than words --- so some words are broken down into smaller chunks.

Input	[CLS]	my	dog	is	cute	[SEP]	he	likes	play	##ing	[SEP]	
Token Embeddings	E _[CLS]	E _{my}	E _{dog}	E _{is}	E _{cute}	E _[SEP]	E _{he}	E _{likes}	E _{play}	E _{##ing}	E _[SEP]	
Segment Embeddings	+ E _A	+ E _B	Separate two segments									
	+	+	+	+	+	+	+	+	+	+	+	
Position Embeddings	E ₀	E ₁	E ₂	E ₃	E ₄	E ₅	E ₆	E ₇	E ₈	E ₉	E ₁₀	

BERT BASE AND BERT LARGE

BERT-base: 12 layers, 768 hidden size, 12 attention heads, 110M parameters

- Same hidden size as OpenAl GPT
- BERT-large: 24 layers, 1024 hidden size, 16 attention heads, 340M parameters

BERT-base: developed for performance comparison with OpenAI GPT

BERT-large: grossly large model for state of the art results

BERTBASE

BERT PRE-TRAINING

- Training corpus: Wikipedia (2.5B) + BooksCorpus (0.8B)
 - OpenAI GPT was trained on BooksCorpus only.
- Max sequence size: 512 word pieces (roughly 256 and 256

for two non-contiguous sequences)

• Trained for 1M steps, batch size 128k

BERT PRE-TRAINING

- MLM and NSP are trained together
- [CLS] is pre-trained for NSP
- Other token
 representations are
 trained for MLM

FINE-TUNING BERT: "PRETRAIN ONCE, FINETUNE MANY TIMES"

Sentence Level Tasks

Token Level Tasks

SENTENCE LEVEL TASKS

• Sentence Pair Classification Tasks

MNLI:

Premise: A soccer game with multiple males playing.

Hypothesis: Some men ar<u>e playing a</u> sport.

{entailment, contradiction, neutral}

QQP:

Q1: Where can I learn to invest in stocks? Q2: How can I learn more about stocks?

{<mark>duplicate</mark>, not duplicate}

• Single Sentence Classification Tasks SST2:

rich veins of funny stuff in this movie

{<mark>positive</mark>, negative}

SENTENCE LEVEL TASKS

- For sentence pair tasks, use [SEP] to separate the two segments with segment embeddings
- Add a linear classifier on top of [CLS] representation and introduce C × h new parameters (C: # of classes, h: hidden size)

TOKEN LEVEL TASKS

• Extractive Question Answering

SQuAD

```
Question: The New York Giants and the New York Jets play
at which stadium in NYC ?
Context: The city is represented in the National Football
League by the New York Giants and the New York Jets ,
although both teams play their home games at MetLife
Stadium in nearby East Rutherford , New Jersey , which
hosted Super Bowl XLVIII in 2014 .
(Training example 29,883)
```

Named Entity Recognition

CoNLL 2003 NER John Smith lives in New York B-PER I-PER O O B-LOC I-LOC

TOKEN LEVEL TASKS

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

• For token-level prediction tasks, add linear classifier on top of hidden representations

EXPERIMENTAL RESULTS: GLUE

System	MNLI-(m/mm) QQ		QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average	
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-	
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0	
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0	
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1	
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6	
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1	

EXPERIMENTAL RESULTS: SQUAD

ABLATION STUDY: PRE-TRAINING TASKS

- MLM>> left-to-

right LMs

- NSP improves on some tasks

Later work (Joshi et al. 2020, Liu et al. 2019) argued that NSP is not useful.

ABLATION STUDY: MODEL SIZE

# la	ayers ↓	hidde size ↓	en ‡ Phe ⊮	ŧ of eads ∕				
Hyperparams				Dev Se	et Accura	ncy		
	#L	#H	#A	LM (ppl)	MNLI-m	MRPC	SST-2	
	3	768	12	5.84	77.9	79.8	88.4	The bigger the better!!!
	6	768	3	5.24	80.6	82.2	90.7	
	6	768	12	4.68	81.9	84.8	91.3	
	12	768	12	3.99	84.4	86.7	92.9	
	12	1024	16	3.54	85.7	86.9	93.3	
	24	1024	16	3.23	86.6	87.8	93.7	

ABLATION STUDY: TRAINING EFFICIENCY

MLM takes longer to converge because it only predicts 15% of tokens.

CONCLUSIONS (IN EARLY 2019)

The empirical results from BERT are great, but the biggest impact on the field is:

With pre-training, bigger == better, without clear limits so far.

AFTER BERT

- Models that handle long contexts (\gg 512 tokens)
 - Longformer, Big Bird (this is really cute), ...
- Multilingual BERT
 - Trained single model on 104 languages from Wikipedia. Shared 110k WordPiece vocabulary
- BERT extended to different domains
 - SciBERT, BioBERT, FinBERT, ClinicalBERT, ...
- Making BERT smaller to use
- DistillBERT, TinyBERT, ...

AFTER BERT

Text Generation Using BERT (generally less effective compared to OpenAl's GPT

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

Alex Wang New York University alexwang@nyu.edu Kyunghyun Cho New York University Facebook AI Research CIFAR Azrieli Global Scholar kyunghyun.cho@nyu.edu

Mask-Predict: Parallel Decoding of Conditional Masked Language Models

Marjan Ghazvininejad* Omer Levy* Yinhan Liu* Luke Zettlemoyer Facebook AI Research Seattle, WA

Exposing the Implicit Energy Networks behind Masked Language Models via Metropolis--Hastings

Kartik Goyal, Chris Dyer, Taylor Berg-Kirkpatrick

Leveraging Pre-trained Checkpoints for Sequence Generation Tasks

Sascha Rothe, Shashi Narayan, Aliaksei Severyn

- src Der Abzug der franzsischen Kampftruppen wurde am 20. November abgeschlossen .
- t = 0 The departure of the French combat completed completed on 20 November .
- t = 1 The departure of French combat troops was completed on 20 November.
- t=2 The withdrawal of French combat troops was completed on November 20th .

NEW RANKINGS! (USING GLUE)

Ranl	< Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m M	NLI-mm	QNLI	RTE	WNLI	АХ
1	Microsoft Alexander v-team	Turing ULR v6		91.3	73.3	97.5	94.2/92.3	93.5/93.1	76.4/90.9	92.5	92.1	96.7	93.6	97.9	55.4
2	JDExplore d-team	Vega v1		91.3	73.8	97.9	94.5/92.6	93.5/93.1	76.7/91.1	92.1	91.9	96.7	92.4	97.9	51.4
3	Microsoft Alexander v-team	Turing NLR v5		91.2	72.6	97.6	93.8/91.7	93.7/93.3	76.4/91.1	92.6	92.4	97.9	94.1	95.9	57.0
4	DIRL Team	DeBERTa + CLEVER		91.1	74.7	97.6	93.3/91.1	93.4/93.1	76.5/91.0	92.1	91.8	96.7	93.2	96.6	53.3
5	ERNIE Team - Baidu	ERNIE		91.1	75.5	97.8	93.9/91.8	93.0/92.6	75.2/90.9	92.3	91.7	97.3	92.6	95.9	51.7
6	AliceMind & DIRL	StructBERT + CLEVER		91.0	75.3	97.7	93.9/91.9	93.5/93.1	75.6/90.8	91.7	91.5	97.4	92.5	95.2	49.1
7	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.8	71.5	97.5	94.0/92.0	92.9/92.6	76.2/90.8	91.9	91.6	99.2	93.2	94.5	53.2
8	HFL IFLYTEK	MacALBERT + DKM		90.7	74.8	97.0	94.5/92.6	92.8/92.6	74.7/90.6	91.3	91.1	97.8	92.0	94.5	52.6
9	PING-AN Omni-Sinitic	ALBERT + DAAF + NAS		90.6	73.5	97.2	94.0/92.0	93.0/92.4	76.1/91.0	91.6	91.3	97.5	91.7	94.5	51.2
10	T5 Team - Google	T5		90.3	71.6	97.5	92.8/90.4	93.1/92.8	75.1/90.6	92.2	91.9	96.9	92.8	94.5	53.1

CITATIONS

Devlin, Jacob, et al. "Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding." *arXiv.Org*, 24 May 2019, arxiv.org/abs/1810.04805.

Fall 2022 Lecture 2: Bert (Encoder–Only Models), www.cs.princeton.edu/courses/archive/fall22/cos597G/lectures/lec02.pdf. Accessed 23 Oct. 2024.

Alammar, Jay. "The Illustrated Bert, Elmo, and Co. (How NLP Cracked Transfer Learning)." The Illustrated BERT, ELMo, and Co. (How NLP Cracked Transfer Learning) – Jay Alammar – Visualizing Machine Learning One Concept at a Time., jalammar.github.io/illustrated-bert/. Accessed 23 Oct. 2024.

Bert Image from Muppet Wiki: 700 × 1,165

Elmo Image from Muppet Wiki: 800 × 979