Opinion Dynamics on Networks with Community Structure

Panagiotis Andreou

University of North Carolina at Chapel Hill

Joint work with Mariana Olvera-Cravioto

University Research Week

October 24, 2024

Networks:

- ¹ Nodes and Edges
- 2 Nodes represent entities, and edges represent connections between them.

Random Graphs:

- **1** Graphs where each edge is present with some probability.
- 2 Useful for modeling first-order properties, like degree distribution, community structure, etc.

Erdös - Rényi

Figure: Different colors for different connected components (source: [Fluid Limits and Random Graphs\)](https://linbaba.wordpress.com/2010/10/15/fluid-limits-and-random-graphs/)

Stochastic Block Model

Figure: SBM with 3 communities (source: [Mathematics sin Fronteras\)](https://www.dam.brown.edu/MSF/misc/MSF_SimulationsClass3.html)

Preferential Attachment

Opinion Dynamics

1 Political Science:

- Understand polarization in modern societies
- Influence of the media in opinion shaping
- Debunk myths about political personas
- **2** Probability Theory:
	- Stochastic Processes on Networks
	- Influence maximization in Social Networks
	- Community detection and clustering

1 Study the behavior of the system under varying **density** regimes and check for phase transitions.

- **1** Study the behavior of the system under varying **density** regimes and check for phase transitions.
- **2** Understand how the opinion process is affected by the passing of time and the change of the network size.
- **1** Study the behavior of the system under varying **density** regimes and check for phase transitions.
- 2 Understand how the opinion process is affected by the passing of **time** and the change of the **network size**.
- **3** Study the typical stationary opinion on an inhomogeneous network.
- The expected degree of a vertex is of order θ_n .
- We call the graph sparse if $\theta_n = O(1)$.
- We call the graph semi-sparse if $\theta_n \to \infty$ and $\theta_n = O(\log n)$.
- $\bullet\,$ We call the graph $\, {\sf dense} \,$ if $\frac{\theta_n}{\log n} \to \infty$ as $\,n \to \infty.$
- Our work covers the entire spectrum of sequences satisfying $\theta_n \to \infty$ as $n \to \infty$.

Our Opinion Process

- Individuals are represented by nodes on a directed SBM.
- An edge from j to i means "*i* listens to j ".

Our Opinion Process

- Individuals are represented by nodes on a directed SBM.
- An edge from *i* to *i* means "*i* listens to *i*".
- $\bullet \ \mathsf{R}^{(k)}_i \in [-1,1]^\ell$: the opinion that node i holds at time k on ℓ topics.
- $\bullet \ \mathsf{W}_i^{(k)} \in [-d,d]^\ell$: media signals that node i receives at time k on ℓ topics.
- $C_{ii} \in [0, 1]$: the weight that *i* puts in *j's* opinion.

Our Opinion Process

- Individuals are represented by nodes on a directed SBM.
- An edge from *i* to *i* means "*i* listens to *i*".
- $\bullet \ \mathsf{R}^{(k)}_i \in [-1,1]^\ell$: the opinion that node i holds at time k on ℓ topics.
- $\bullet \ \mathsf{W}_i^{(k)} \in [-d,d]^\ell$: media signals that node i receives at time k on ℓ topics.
- $C_{ii} \in [0, 1]$: the weight that *i* puts in *j's* opinion.
- Update opinions according to the recursion

$$
\mathbf{R}_{i}^{(k)} = c \sum_{j=1}^{n} C_{ij} \mathbf{R}_{j}^{(k-1)} + \mathbf{W}_{i}^{(k)} + (1 - c - d) \mathbf{R}_{i}^{(k-1)}, \qquad (1)
$$

where $\{{\bf W}_i^{(k)}\}$ $\binom{K}{i}$: $k \ge 0$ } are i.i.d. and $0 < c + d \le 1$. • *Issue:* our opinion process is too complicated because of the underlying network.

- *Issue*: our opinion process is too complicated because of the underlying network.
- *Idea:* replace all the interactions in a complex system by an *average* interaction. That's the essence of mean-field approximation!
- *Issue*: our opinion process is too complicated because of the underlying network.
- *Idea:* replace all the interactions in a complex system by an *average* interaction. That's the essence of mean-field approximation!
- Intuition: the presence of many particles should reduce the effect of each particle on the entire system.
- *Issue*: our opinion process is too complicated because of the underlying network.
- *Idea:* replace all the interactions in a complex system by an *average* interaction. That's the essence of mean-field approximation!
- Intuition: the presence of many particles should reduce the effect of each particle on the entire system.
- *Practicality:* reduce the initial high-dimensional problem of a stochastic process on a network to one of much lower dimension.

The mean-field limit

 \bullet Approximate the original process $\{R^{(k)}\}_{k\geq 0}$ by another process $\{\mathcal{R}^{(k)}\}_{k\geq 0}$ whose main characteristic is that its rows $\{\boldsymbol{\mathcal{R}}_i^{(k)}\}$ $i^{(k)}$: $k \geq 0, i \in V_n$ } are conditionally independent of each other given the community labels.

The mean-field limit

- \bullet Approximate the original process $\{R^{(k)}\}_{k\geq 0}$ by another process $\{\mathcal{R}^{(k)}\}_{k\geq 0}$ whose main characteristic is that its rows $\{\boldsymbol{\mathcal{R}}_i^{(k)}\}$ $i^{(k)}$: $k \geq 0, i \in V_n$ } are conditionally independent of each other given the community labels.
- \bullet The approximating process is given by: $\mathcal{R}^{(0)} = \mathcal{R}^{(0)}$ and

$$
\mathcal{R}_{i}^{(k)} = \sum_{t=0}^{k-1} (1 - c - d)^{t} \mathbf{W}_{i}^{(k-t)} + 1(k \ge 2) \sum_{t=1}^{k-1} \sum_{s=1}^{t} a_{s,t} (M^{s} \overline{W})_{J_{i} \bullet}
$$

$$
+ \sum_{s=1}^{k} a_{s,k} (M^{s} \overline{R})_{J_{i} \bullet} + (1 - c - d)^{k} \mathbf{R}_{i}^{(0)},
$$

for $k\geq 1$ and $i\in V_n$, where $a_{s,t}=\binom{t}{s}$ $S_{s}^{t}(1-c-d)^{t-s}c^{s}.$

The mean-field limit

- \bullet Approximate the original process $\{R^{(k)}\}_{k\geq 0}$ by another process $\{\mathcal{R}^{(k)}\}_{k\geq 0}$ whose main characteristic is that its rows $\{\boldsymbol{\mathcal{R}}_i^{(k)}\}$ $i^{(k)}$: $k \geq 0, i \in V_n$ } are conditionally independent of each other given the community labels.
- \bullet The approximating process is given by: $\mathcal{R}^{(0)} = \mathcal{R}^{(0)}$ and

$$
\mathcal{R}_{i}^{(k)} = \sum_{t=0}^{k-1} (1 - c - d)^{t} \mathbf{W}_{i}^{(k-t)} + 1(k \ge 2) \sum_{t=1}^{k-1} \sum_{s=1}^{t} a_{s,t} (M^{s} \overline{W})_{J_{i} \bullet}
$$

$$
+ \sum_{s=1}^{k} a_{s,k} (M^{s} \overline{R})_{J_{i} \bullet} + (1 - c - d)^{k} \mathbf{R}_{i}^{(0)},
$$

for $k\geq 1$ and $i\in V_n$, where $a_{s,t}=\binom{t}{s}$ $S_{s}^{t}(1-c-d)^{t-s}c^{s}.$

• Key-property: independent trajectories!

Theorem (A., Olvera-Cravioto '24)

Suppose $\theta_n \geq (6H\Lambda_n)^2\Delta_n$ log n. Then, there exists a constant $\Gamma < \infty$ such that

$$
\sup_{k\geq 0} \mathbb{E}_n \left[\left\| R^{(k)} - \mathcal{R}^{(k)} \right\|_{\infty} \right] \leq \Gamma \left(\sqrt{\frac{\log n}{\theta_n}} + \mathcal{E}_n \right),\tag{2}
$$

where $\mathcal{E}_n := \max_{1 \le r,s \le \mathsf{K}} \Big|$ $\frac{\pi_s^{(n)} \pi_r - \pi_s \pi_r^{(n)}}{n}$ $\pi_r^{(n)}\pi_s$ $\big\vert$. Moreover, for any sequence θ_n satisfying $\theta_n \to \infty$ as $n \to \infty$,

$$
\sup_{k\geq 0} \max_{i\in V_n} \mathbb{E}_n \left[\left\| \mathbf{R}_i^{(k)} - \mathcal{R}_i^{(k)} \right\|_1 \right] \xrightarrow{P} 0, \tag{3}
$$

as $n \to \infty$.

Theorem (A., Olvera-Cravioto '24)

There exists a random variable $\cal R_\emptyset$ such that $\bm R_{I_n}\Rightarrow \bm {\cal R}_\emptyset$ as $n\to\infty$, and $\bm {\cal R}_\emptyset^{(k)}\Rightarrow \bm {\cal R}_\emptyset$ as $k \to \infty$. Hence, the following diagram commutes.

$$
\mathbf{R}_{I_n}^{(k)} \xrightarrow{k \to \infty} \mathbf{R}_{I_n}
$$
\n
$$
\downarrow n \to \infty
$$
\n
$$
\mathcal{R}_{\emptyset}^{(k)} \xrightarrow{k \to \infty} \mathcal{R}_{\emptyset}
$$

Simulations

- $n = 2000$ individuals, grouped into $K = 2$ communities. The first half belong to community 1 and the other half to community 2.
- The kernel is

$$
\kappa = \begin{pmatrix} 10 & 1 \\ 1 & 2 \end{pmatrix},
$$

so the network structure plays an important role.

- Uniform media on topic 1, targeted media on topic 2.
- The initial opinions are uniform on both topics, regardless of community belongings.
- Consider different levels of densities θ_n , to see the effect of edge-density in the accuracy of the mean-field approximation.

Initial vs. Expressed Opinions

Figure: Initial and expressed opinions, with targeted media on the first topic and uniform media on the 2nd topic. The result is a separation in the expressed opinions across the first topic and a mixture of opinions on the second topic. We observe that for the first topic the opinions of community 1 individuals are more concentrated compared to those of community 2. This is justified by the fact that $\kappa(1,1) = 10 \gg 2 = \kappa(2,2)$ and at edge-density $\theta_n = \log n$ the network effect is still sufficiently present.

Accuracy of MFA

Figure: Distribution of opinions for both topics, for densities $\theta_n = 1$, log $n, \sqrt{n}, \frac{n}{10}$. We observe what the theory suggests, namely, that the approximation is very tight on both of the strain of the str topics for the dense regimes, $\theta_n = \frac{n}{10}$ and $\theta_n = \sqrt{n}$, with the densest one $(\theta_n = \frac{n}{10})$ being slightly more accurate. The approximation remains sufficiently accurate for the semi-sparse ($\theta_n = \log n$) regime, while it deteriorates in the sparse ($\theta_n = 1$) regime.

Political Personas

Figure: Initially, people feel more strongly about topic 1 and are indifferent about topic 2. After they are exposed to media signals that are **positively correlated between the two** topics, they start feeling more strongly about topic 2 as well. We say that *political* personas are created.

1 When the network is sparse, individual opinions matter significantly.

2 As the network gets denser, individuals essentially don't interact but rather update based on the "average" opinion.

References

- Andreou, P. and Olvera-Cravioto, M. (2024). "Opinion dynamics on non-sparse networks with community structure". arXiv:2401.04598
- Avrachenkov, K., Kadavankandy, A., and Litvak, N. (2018). "Mean field analysis of personalized PageRank with implications for local graph clustering." Journal of statistical physics, 173:895–916.
- Fraiman, N., Lin, T.-C., and Olvera-Cravioto, M. (2024). "Opinion dynamics on directed complex networks." Mathematics of Operations Research (To appear).
- Olvera-Cravioto, M. (2022). "Strong couplings for static locally tree-like random graphs." Journal of Applied Probability, 59(4):1261–1285.
- Lee, J. and Olvera-Cravioto, M. (2020). "PageRank on inhomogeneous random digraphs." Stochastic Processes and their Applications, 130(4):2312–2348.