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STOR566: Introduction to Deep Learning
Lecture 22: Explainability of ML Models

Yao Li
UNC Chapel Hill

Nov 15, 2022

Materials are from Deep Learning (UCLA)
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Motivations
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Why Explainability

Understand predictions/decisions of machine learning models
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Why Explainability

Improve machine learning models
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Why Explainability

Learn new insights
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Approaches
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Approaches

What is an “explanation”?

Feature attribution

The model makes this prediction because of feature (pixel) X

Data attribution

The model makes this prediction because of which training data

Surrogate model

Approximate the complex model using a simple explainable
surrogate model

We focus on the first two types in today’s lecture.
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Feature Attribution
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What is Feature Attribution?

Given a model f and input x
Assign a relevant score to each input feature

Ri : how much does feature i contributes to the prediction
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Perturbation-based Analysis

Assumption: Feature i is important → Perturbing xi (the i-th feature
of input x) will significantly change f (x)
Therefore, assign relevant score for each feature by

Ri ← f (x)− f (x + δei ),

Ri : importance score of i-th input feature

ei : vector of zeros except that the i-th element is one. The dimension
is the same as x .

Questions:

How to choose perturbation δ?
Efficiency: may need O(d) function evaluations. d is the dimension of x .
Can this capture the correlation between features?
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Linear Model

Linear prediction

f (x) = wTx
= w1x1 + w2x2 + ...+ wdxd

For any fixed perturbation

f (x)− f (x + δei ) = δwi ∝ wi

Feature importance:

Ri ← wi



12/31

Gradient

Consider the case when δ → 0

lim
δ→0

f (x)− f (x − δei ) =
∂

∂xi
f (x)

Therefore, we can use gradient to measure importance of each feature

Ri ←
∂

∂xi
f (x)

(Usually set f as the logit of the target model)

Saliency map: visualize pixels with positive gradients

Simonyan et al., Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. 2013.
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Smoothed Gradient

Gradient maps are often noisy (visually)

Smoothed gradient:

R(x) = Ez∼N(0,σ)∇f (x + z)

Smilkov et al., SmoothGrad: removing noise by adding noise. 2017
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LIME

Build a local linear model, but not as local as gradient.

Ribeiro et al., Why Should I Trust You?: Explaining the Predictions of Any Classifier. KDD, 2016.
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LIME

Find a local linear model to mimic target (complex) model

Sample weights: more weights to local samples
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LIME

Overview
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Concept-based Explanations

Attribution to raw features may not be human understandable

Can we attribute the prediction to high-level concepts instead of
low-level features (pixels)?

Kim et al., Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV). ICML,

2018.
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TCAV

A concept can be given as positive/negative instances

Assume layer l in DNN captures the concept c =< v lC , x
l >

Then attribution to concept is the product of gradient ∂f
∂x l

and v lC



19/31

TCAV

Experimental results
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Data Attribution
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Explaining by Training Data

Which training data causes the prediction?
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Influence Function

What’s the relationship between training data and model?

θ̂ = argmin
θ

1

n

n∑
i=1

L(xi , θ)

θ̂: model parameters

xi : training sample i

Each training sample contributes to the model equally ( 1n is the weight
of each sample)

Can we compute the influence when the weight of a training sample
slightly increased or decreased?

Koh et al., Understanding Black-box Predictions via Influence Functions. ICML, 2017.
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Influence Function

Assume adding more weight (ϵ) to xj (the j-th training sampe)

The model will become

θ̂ϵ,xj = argmin
θ

1

n

n∑
i=1

L(xi , θ) + ϵL(xj , θ)

Gradient of loss w.r.t. ϵ:

Iup,loss : =
dL(xtest , θ̂ϵ,xj )

dϵ

∣∣∣∣
ϵ=0

= −∇θL(xtest , θ̂)TH−1

θ̂
∇θL(xj , θ̂)

xtest : a test sample

Hθ̂ :=
1
n∇

2
θL(xi , θ̂)
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Influence Function

Experimental results
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Influence Function

Can be used for poisoning attack to identify important training samples.
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Representer Theorem in Linear Models

Linear model: f (x) = wTx
Representer theorem: model can
be decomposed with training
samples

w =
n∑

i=1

αixi

SVM: αi ̸= 0 support vectors

General: represent the
importance of each sample
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Representer Theorem in Linear Models

For a test sample: xtest :

f (xtest) = wTxtest =
n∑

i=1

αixT
i xtest

αixT
i xtest : importance of sample xi in the final prediction based on xtest

A natural way to attribute prediction to each training sample
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Representer Points in DNN

Consider the final hidden
layer output for each
training sample:
fi := f (xi ), i = 1, ..., n

Applying representer
theorem to the final linear
layer: Θ1 =

∑n
i=1 αi fi

Attribute the prediction
by F (xt) =

∑n
i=1 αi f

T
i ft

ft : final layer output
based on test sample xt

Yeh et al., Representer Point Selection for Explaining Deep Neural Networks.

NeurIPS, 2018.
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Representer points in DNN
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Representer points in DNN
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Conclusions

Introduction to explainable ML

Feature attribution

Data attribution

Questions?


