Yao Li
UNC Chapel Hill

Nov 8, 2022

Materials are from Deep Learning (UCLA)

DAt 1729

Neural Architecture Search (NAS)

@ Neural network architecture is important for both accuracy and

efficiency

' Inception-v4
Inception-v3 . . .

ResNet-152 —
ResNet-50 y o ————
13 . ResNet-101 VoS o ===
. ResN —_—
E ResNet-18 Schannels =
4 Qamm,m . \ wider
5 o £ =S
g deeper
E © Bn-NIN -
"0 sM 35M 6SM 9SM 125M 155M - H
BN-AlexNet R E H
s AlexNet noher
[} resolution HxW E i resoluton
50
0 5 10 15 20 25 30 33 40 (@) basaiine (o) width scaling (c) depth scaiing (¢) resodution scaking
Operations [G-Ops]

=] & = = = 9DAC 3/29

NAS: Why this Architecture?

@ Architecture of VGG19 and
ResNet34 on ImageNet

@ How does people come up with
this final architecture?

@ Can we automatically design an
architecture?

34laver plain 34-layer residual
Csewm | [wemwsn]

[en
[] [mea]

i
Uil

LA

L e

ULRELEEE

B |E B

BlelBlE Bl d

i

S

Fle

RLEEELLGLEELL

it
i

NAS: Overview

architecture
Ac A .
Search Space L —— | Performance
P Search Strategy Estimation
A I Strategy
performance

estimate of A

Picture from Elsken et al., Neural Architecture Search: A Survey, JMLR, 2019

@ Abstract illustration of Neural Architecture Search methods.

Search Space

@ An illustration of different

architecture spaces.

@ Left: Chain-structured neural
networks

@ Right: A more complex search
space with additional layer types

[input |

Picture from Elsken et al., Neural Architecture Search: A Survey,

JMLR, 2019

Search Space: Parameters

For Chain-structured neural networks:
@ n: the (maximum) number of layers

@ the type of operation in a layer, e.g., pooling, convolution,
full-connected, etc.

@ hyper-parameters associated with the operations

For more complex search space:
@ Skip connection
@ Dense net connection

Search Space: Parameters

For Chain-structured neural networks:
@ n: the (maximum) number of layers

@ the type of operation in a layer, e.g., pooling, convolution,
full-connected, etc.

@ hyper-parameters associated with the operations

For more complex search space:
@ Skip connection
@ Dense net connection

The optimization problem can be very hard!

Search Space: Cell-based

@ Search the architecture for a cell
(block)

@ Build final architecture by
stacking cells.

@ Zoph et al., Neural architecture search
with reinforcement learning. ICLR, 2017.:
normal cell, reduction cell

Picture from Elsken et al., Neural Architecture Search: A Survey,

JMLR, 2019

Search Space: Cell-based

@ Search the architecture for a cell
(block)

@ Build final architecture by
stacking cells.

@ Zoph et al., Neural architecture search
with reinforcement learning. ICLR, 2017.:
normal cell, reduction cell

Picture from Elsken et al., Neural Architecture Search: A Survey,

JMLR, 2019

How to determine the macro-architecture?

Overview of Search Strategies:

Bayesian optimization

@ Evolutionary methods

@ Reinforcementt learning (RL)
o Gradient-based methods
°

=] & = = E DA g/p9

In 2016, Reinforcement learning (RL) is proposed for NAS
@ A better (structured) representation of search space

@ Learning a controller to generate architectures

DA 10/29

Search Strategy: RL

In 2016, Reinforcement learning (RL) is proposed for NAS
@ A better (structured) representation of search space

@ Learning a controller to generate architectures

Papers:
@ Zoph et al., Neural Architecture Search with Reinforcement Learning. ICLR, 2017.

@ Baker et al., Designing Neural Network Architectures using Reinforcement Learning. ICLR,

2017.
Architecture Test Error (%) Search Cost (GPU days) Search Method
ResNet (He et al., 2016) 4.62 - manual
_DenseNet-BC (Huang etal 2017) 346 o mamal
NAS-RL (Zoph & Le, 2017) 3.65 22,400 RL

Child
Action
Propose an architecture Network
Controller
Reward Accuracy

N

Training
Data

Validation

@ Controller: a RNN to propose an architecture

@ Train and evaluate proposed architecture
o Update the controller with the reward

DA 11/29

Controller

o Controller to generate hyper-parameters of neural networks
@ RNN as backbone

@ Simple example: generate hyper-parameters of a chain-structured CNN

13571 [1,357] [1,23] [123] [24,364864]

Softmax

Number
“ [of Filters]:

Filter
Height |\

Filter
Width |\

Stride
Height [\

Stride
Width

Filter
Height [\

i jof Filters|,

Hidden State

Embedding
iA
VLayerN-l . Layer N ¥ e Layeva-i-‘l
3;7;1;2;36
Filter Height Filter Width Stride Height Stride Width Number of Filters

Figure from Zoph et al., Neural Architecture Search with Reinforcement Learning. ICLR, 2017.

Controller: Anchor Point

@ Anchor point to form skip connection

o At layer N, N — 1 sigmoids to indicate the previous connections

MN-1 skip connections

Filter
Height [\

Filter
Width [

Stride
Helght

Stride
Width |

Anchor
Point

Anchor
Paint

. Number|
% |of Filters[

Number|
\ [of Filters],

Filter
Height [\

Layer N-1 ” Layer N Layer I\j+1

Evolutionary Algorithm

Parent Selection
I »| Parents

Initialization] Survivor o '
»| Population Selection Recombination & Mutation

A

Fitness Evaluation

Offspring

@ A nature inspired approach to optimization
@ Process of getting the most out of something

@ Inspired by the notion of survival of the fittest from Darwinian
Evolution and modern genetics

Brief Introduction of Evolutionary Algorithm

The following slides are from

https://www.researchgate.net/publication/310365190_Introduction_to_Evolutionary_Algorithms

Initialisation
v
> Evaluate

v [Al [B] [C] [DO] [E] [F]

Terminate?

v

Selection

v

— Variation

https://www.researchgate.net/publication/310365190_Introduction_to_Evolutionary_Algorithms

Brief Introduction of Evolutionary Algorithm

Initialisation

v

> Evaluate

v

Terminate?

v

Selection

v

- Variation

rle

[Al [B] [C] I[D] [E] [F]

Parameters: Left arm length
— Left leg length — Right arm
— Right leg length length
— Torso length — Head Size
Chromosome:

| Left Leg ‘ Torso | Left Arm ‘ Head |RIgMAm| | Right Leg

Brief Introduction of Evolutionary Algorithm

Initialisation
v
> Evaluate

v [A] Bl [C] [D] [E] [F]

Terminate?

v

Selection /
v
— Variation

Brief Introduction of Evolutionary Algorithm

Initialisation
v
> Evaluate
v [A] [Bl [C] [D] lEl [F]
Terminate? 250 350 240 320 10 0

v

Selection /
v
- Variation

O
L]

L
100 200 300 400 500 600

Brief Introduction of Evolutionary Algorithm

Initialisation

v

> Evaluate

2

Terminate?

v

Selection

v

— Variation

rle

[Al [B] [C] [DO] [E] [F]
250 350 240 320 10 0
Termination Criteria
— Goal achieved?
— Number of generations reached max?
— Performance stagnating?

Initialisation

v
) EVa|Uate
v

(A
Terminate?

Bl [C]
v

250 330 320
Selection * ik ik

DA 20/29

Initialisation

v
Ea EVa|u ate

Terminate? "

v

[D]
350 320
Selection

S

—

DA 91/29

Initialisation

v

Eq Evaluate

v

Terminate?

v

Selection

1E 31

[A] [B] [C] (01 [E] [F]
350 320

i‘zilfilr

(T | [o s

=} = = E E DA 22/29

Initialisation
v
i Evaluate
, [A] B] [C] A
Term‘llr:ate? W)
Selection

_ [| o= o

Right Arm | RightLeg

DAC 93/09

NAS with EA

Real et al., Regularized Evolution for
Image Classifier Architecture Search.

AAAI, 2019.
Steps:

@ Sample S models from the
population

@ Pick the one with the best
performance as parent

o Mutate to generate child

@ Train child, evaluate, add back
to the population

@ Discard the oldest from the
population

Algorithm 1 Aging Evolution

population < empty queue © The population.
history + @ > Will contain all models.
while |population| < P do t> Initialize population.

model.arch + RANDOMARCHITECTURE()
model.accuracy ¢ TRAINANDEVAL (model.arch)
add model to right of population
add model to history
end while
while |history| < C do
sample +— @
while |sample| < S do
candidate ¢ random element from population
> The element stays in the population.
add candidate to sample
end while
parent < highest-accuracy model in sample
child.arch < MUTATE(parent.arch)
child.accuracy < TRAINANDEVAL(child.arch)
add child to right of population
add child to history
remove dead from left of population > Oldest.
discard dead
end while
return highest-accuracy model in history

> Evolve for C cycles.
> Parent candidates.

NAS is Expensive

@ Experiments for NAS are typically time consuming to run

@ RL or evolutionary algorithm often need to evaluate > 10,000 configs
in a single run

—»| Performance evaluation

Search Algorithm [*—1 (e.g., 100-epoch training)

@ Significantly reduced search time since 2018

Architecture Test Error (%) Search Cost (GPU days) Search Method
DenseNet-BC (Huang et al., 2017) 3.46 - ‘manual
NAS-RL (Zoph & Le, 2017) 3.65 22,400 RL
NASNet-A (Zoph et al., 2018) 2.65 2000 RL
BlockQNN (Zhong et al., 2018) 354 96 RL
AmoebaNet (Real et al., 2019) 3.34 + 0.06 3150 evolution
Hierarchical GA (Liu et al., 2018) 375 300 evolution
GCP (Suganuma et al., 2017) 5.98 15 evolution
DARTS (lIst) (Liu et al., 2019) 3.00+0.14 04 differentiable
DARTS (2nd) (Liu et al., 2019) 2.76 + 0.09 1.0 differentiable
SNAS (moderate) (Xie et al., 2019) 2.85 £ 0.02 1.5 differentiable
GDAS (Dong & Yang, 2019) 293 03 differentiable
ProxylessNAS (Cai et al., 2019)" 2.08 4.0 differentiable
PC-DARTS (Xu et al., 2020) 2.57 £ 0.07 0.1 differentiable
NASP (Yao et al., 2019) 2.83 +0.09 0.1 differentiable
SDARTS-ADV (Chen & Hsieh, 2020) 2.61+0.02 1.3 differentiable
DrNAS (Chen et al., 2019) 2.46 + 0.03 0.6 differentiable
DARTS+PT (Wang et al., 2020) 2.61 + 0.08 0.8 differentiable

Can run on a
single GPU
machine!

DA 27/29

Weight Sharing

Path A Path B

@ Models defined by Path A and Path B should be trained separately
@ Can we assume Path A and Path B share the same weight at 1 — 27
Weight Sharing

Avoid retraining for each new architecture

@ A brief introduction to NAS

o Multiple search strategies

Questions?

DA 29/29

