STOR566: Introduction to Deep Learning Lecture 18: Transformers for Vision

Yao Li UNC Chapel Hill

Nov 1, 2022

Materials are from Deep Learning (UCLA)

<□> <@> < E> < E> E のQで 1/19

Recap: Transformer for NLP

How can we apply it to computer vision?

Vision Transformer (ViT)

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 3/19

Vision Transformer (ViT)

- Partition input image into $K \times K$ patches
- A linear projection to transform each patch to feature (no convolution)
- Pass tokens into Transformer

(Dosovitskiy et al., 2020, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale") $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Delta \rangle \langle$

ViT: Image processing

• Partition input image into $K \times K$ patches

ViT: Projection

• Flatten and projection to feature vector (no convolution)

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の へ ⊖ 6/19

ViT: Positional encoding

• Add positional encoding

Ξ

96

Vision Transformer (ViT)

- Patches are non-overlapping in the original ViT
- N imes N image $\Rightarrow (N/K)^2$ tokens
- Smaller patch size \Rightarrow more input tokens
 - Higher computation (memory) cost, (usually) higher accuracy
- Use 1D (learnable) positional embedding
- Inference with higher resolution:
 - Keep the same patch size, which leads to longer sequence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 8/19

• Use learnable class embedding

ViT: Class embedding

• Only outputs related to class embedding are fed into the MLP head

ViT Performance

ViT outperforms CNN with large pretraining

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 のへで

BiT (2020): a SOTA CNN architecture

Attention maps of ViT (to input)

<ロト < 母ト < 目ト < 目ト 目 の へ C 11/19

ViT v.s. ResNet

- Can ViT outperform ResNet on ImageNet without pretraining?
- Deit (Touvron et al., 2021):
 - Use very strong data augmentation
 - Use a ResNet teacher and distill to ViT

												top-1 accuracy		
Ablation on ↓	Pre-training	Fine-tuning	Rand-Augment	AutoAug	Mixup	CutMix	Erasing	Stoch. Depth	Repeated Aug.	Dropout	Exp. Moving Avg.	pre-trained 2242	fine-tuned 384 ²	
none: DeiT-B	adamw	adamw	1	x	1	1	1	1	1	×	x	81.8 ±0.2	$83.1{\scriptstyle~\pm 0.1}$	
optimizer	SGD adamw	adamw SGD	1	× ×	1	1	1	1	1	× ×	× ×	74.5 81.8	77.3 83.1	
data augmentation	adamw adamw adamw adamw adamw	adamw adamw adamw adamw adamw	**>>>	* * * * *	~~×~×	>>> × × × ×	~ ~ ~ ~ ~ ~	55555		* * * * *	× × × × × ×	79.6 81.2 78.7 80.0 75.8	80.4 81.9 79.8 80.6 76.7	
regularization	adamw adamw adamw adamw adamw	adamw adamw adamw adamw adamw	5555	* * * * *		1111	* > > > >	× × × ×	× × × × ×	$\times \times \times \times \times$	$\overset{\times}{}\times\overset{\times}{}\times$	4.3* 3.4* 76.5 81.3 81.9	0.1 0.1 77.4 83.1 83.1	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

ViT v.s. ResNet

• ViT tends to converge to sharper regions than ResNet

(Chen et al., 2021, "When vision transformers outperform ResNets without pre-training or strong data augmentations") $(\Box \mapsto \langle \Box \rangle + \langle$

"Sharpness" is related to generalization

- Testing can be viewed as a slightly perturbed training distribution
- $\bullet\,$ Sharp minimum $\Rightarrow\,$ performance degrades significantly from training to testing

Figure from (Keskar et al., 2017)

Sharpness Aware Minimization (SAM)

• Optimize the worst-case loss within a small neighborhood

 $\min_{w} \max_{\|\delta\|_2 \leq \epsilon} L(w + \delta)$

- ϵ is a small constant (hyper-parameter)
- Use 1-step gradient ascent to approximate inner max:

$$\hat{\delta} = \arg \max_{\|\delta\|_2 \le \epsilon} L(w) + \nabla L(w)^T \delta = \epsilon \frac{\nabla L(w)}{\|\nabla L(w)\|}$$

• Conduct the following update for each iteration:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \nabla \boldsymbol{L}(\boldsymbol{w} + \hat{\delta})$$

(Foret et al., 2020, "Sharpness-Aware Minimization for Efficiently Improving Generalization")

Sharpness Aware Minimization (SAM)

SAM is a natural way to penalize sharpness region (but requires some computational overhead)

ViT v.s. ResNet

• When both trained by SAM, ViT outperforms ResNet on ImageNet (without pretraining, strong augmentation, distillation)

Model	#params	Throughput (img/sec/core)	ImageNet	Real	V2	ImageNet-R	ImageNet-C					
ResNet												
ResNet-50-SAM	25M	2161	76.7 (+0.7)	83.1 (+0.7)	64.6 (+1.0)	23.3 (+1.1)	46.5 (+1.9)					
ResNet-101-SAM	44M	1334	78.6 (+0.8)	84.8 (+0.9)	66.7 (+1.4)	25.9 (+1.5)	51.3 (+2.8)					
ResNet-152-SAM	60M	935	79.3 (+0.8)	84.9 (+0.7)	67.3 (+1.0)	25.7 (+0.4)	52.2 (+2.2)					
ResNet-50x2-SAM	98M	891	79.6 (+1.5)	85.3 (+1.6)	67.5 (+1.7)	26.0 (+2.9)	50.7 (+3.9)					
ResNet-101x2-SAM	173M	519	80.9 (+2.4)	86.4 (+2.4)	69.1 (+2.8)	27.8 (+3.2)	54.0 (+4.7)					
ResNet-152x2-SAM	236M	356	81.1 (+1.8)	86.4 (+1.9)	69.6 (+2.3)	28.1 (+2.8)	55.0 (+4.2)					
Vision Transformer												
ViT-S/32-SAM	23M	6888	70.5 (+2.1)	77.5 (+2.3)	56.9 (+2.6)	21.4 (+2.4)	46.2 (+2.9)					
ViT-S/16-SAM	22M	2043	78.1 (+3.7)	84.1 (+3.7)	65.6 (+3.9)	24.7 (+4.7)	53.0 (+6.5)					
ViT-S/14-SAM	22M	1234	78.8 (+4.0)	84.8 (+4.5)	67.2 (+5.2)	24.4 (+4.7)	54.2 (+7.0)					
ViT-S/8-SAM	22M	333	81.3 (+5.3)	86.7 (+5.5)	70.4 (+6.2)	25.3 (+6.1)	55.6 (+8.5)					
ViT-B/32-SAM	88M	2805	73.6 (+4.1)	80.3 (+5.1)	60.0 (+4.7)	24.0 (+4.1)	50.7 (+6.7)					
ViT-B/16-SAM	87M	863	79.9 (+5.3)	85.2 (+5.4)	67.5 (+6.2)	26.4 (+6.3)	56.5 (+9.9)					
MLP-Mixer												
Mixer-S/32-SAM	19M	11401	66.7 (+2.8)	73.8 (+3.5)	52.4 (+2.9)	18.6 (+2.7)	39.3 (+4.1)					
Mixer-S/16-SAM	18M	4005	72.9 (+4.1)	79.8 (+4.7)	58.9 (+4.1)	20.1 (+4.2)	42.0 (+6.4)					
Mixer-S/8-SAM	20M	1498	75.9 (+5.7)	82.5 (+6.3)	62.3 (+6.2)	20.5 (+5.1)	42.4 (+7.8)					
Mixer-B/32-SAM	60M	4209	72.4 (+9.9)	79.0 (+10.9)	58.0 (+10.4)	22.8 (+8.2)	46.2 (12.4)					
Mixer-B/16-SAM	59M	1390	77.4 (+11.0)	83.5 (+11.4)	63.9 (+13.1)	24.7 (+10.2)	48.8 (+15.0)					
Mixer-B/8-SAM	64M	466	79.0 (+10.4)	84.4 (+10.1)	65.5 (+11.6)	23.5 (+9.2)	48.9 (+16.9)					

(Chen et al., 2021, "When vision transformers outperform ResNets without pre-training or strong data augmentations")

ViT v.s. ResNet (representation power)

- Let's compare one ViT layer vs one convolution layer
- Reception field: (which input neurons can affect an output neuron)
 - CNN: some subarea of image (kernel size)
 - Self-attention: the whole image
 - $\bullet \; \Rightarrow \;$ there exists self-attention function that cannot be captured by convolution

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ◆ ○ ○ ○ 18/19

Conclusions

• A brief introduction of Vision Transformer.

Questions?

< □ ▷ < @ ▷ < 볼 ▷ < 볼 ▷ 볼 · ♡ < ♡ 19/19