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Federated Learning (FL)



@ Overview
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@ Decentralized data

@ Data privacy preserving
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@ Examples:

Gboard on Android

Media playback preferences in Safari
Voice assistant in Siri

Health care related problems
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Example: Gboard on Android

@ Gboard on Android:
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Example: Voice assistant in Siri

@ Voice assistant in Siri:

MIT Review Signin -Sununne =Q

Artificial intelligence / Machine learning

How Apple personalizes Siri without
hoovering up your data

The tech giant is usi i ing machine learning to
improve its voice assistant while! keeping your data on your phone.

by KarenHao December 11,2019




@ Privacy-Preserving Al to ldentify Brain Tumors:
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Federated Workflow

Instead of data moving to a central place,
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Definition

Federated Learning

Federated learning(FL) is a machine learning setting where multiple clients
collaborate in solving a ML problem, under the coordination of a central
server. Each client’s raw data is stored locally and not exchanged or
transferred; instead, updates intended for immediate aggregation are used
to achieve the learning objective.



@ Get the global model:
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@ Local training:

@ local training
>
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@ Send updates to server:
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o Aggregation:

@ aggregate &
® update the new global model
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aggregation.

@ In general, not all the local users will be selected to participate the
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Aggregation Algorithms



@ McMahan et al. Communication-efficient learning of deep networks
from decentralized data. PMLR, 2017.
e FedSGD

o FedAVG

@ Yin et al. Byzantine-robust distributed learning: Towards optimal
statistical rates. ICML, 2018.
o Median

e Trim-mean
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FedSGD

@ FedSGD: Update the model locally for one epoch then send back to the
central server.

K
o FedSGD: The global model update: wi™t « wt —n .35 tkgy
w': weight of the global model at round t

n: learning rate

K: number of local users selected to participate the aggregation

ng: number of samples on user k
K
n: Yoy Nk

g« gradient from user k



FedAVG

o FedAVG: Update the model locally for several epochs then send back
the new model

o FedAVG:
Each user first do: withk < wt —ng, (multiple times)
The global model update: wi*! ¢ SO Ty t+Lk
witl: weight of the global model at round t + 1
witLk: weight of the local model on user k at round t + 1



@ E: number of local epochs. E = 1: FedSGD

@ B: batch size of local training
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Communication Rounds

Communication Rounds
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@ Security: no control of the data

e Data heterogeneity: violation of |.I.D. assumption (Non-IID)
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Robust Aggregation

What if some local data are mislabelled?
Robust Aggregation Methods:

@ Median: Yin et al. (2018), coordinate-wise median among the weight
vectors of selected users.

@ Trim-mean: Yin et al. (2018), coordinate-wise mean with trimmed
values.

Problem:

@ performance degradation



Robust Aggregation: Performance

@ «: proportion of wrong data

10 Convolutional neural network
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Parallel iterations

@ When « > 0, robust aggregation methods perform better



o Federated learning

o Aggregation algorithms

Questions?
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