STOR566: Introduction to Deep Learning

Lecture 18: Federated Learning

Yao Li UNC Chapel Hill

Nov 7, 2024

Some materials are from Machine Learning and Vision Lab, UNIST

Federated Learning (FL)

Federated Learning: Overview

Overview:

- Decentralized data
- Data privacy preserving

Federated Learning

- Examples:
 - Gboard on Android
 - Media playback preferences in Safari
 - Voice assistant in Siri
 - Health care related problems

Example: Gboard on Android

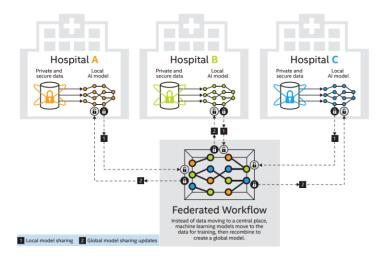
• Gboard on Android:

Example: Voice assistant in Siri

Voice assistant in Siri:

Example: Health care

• Privacy-Preserving AI to Identify Brain Tumors:

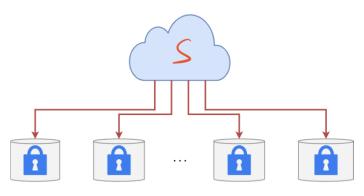


Definition

Federated Learning

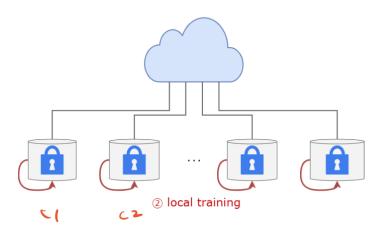
Federated learning(FL) is a machine learning setting where multiple clients collaborate in solving a ML problem, under the coordination of a central server. **Each client's raw data is stored locally and not exchanged or transferred**; instead, updates intended for immediate aggregation are used to achieve the learning objective.

• Get the global model:

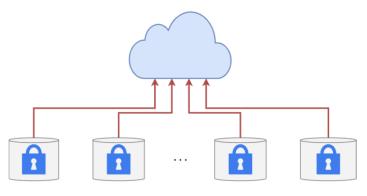


1 get the global model

• Local training:



• Send updates to server:



3 update to server

• Aggregation:

• In general, not all the local users will be selected to participate the aggregation.

Aggregation Algorithms

Algorithms

- McMahan et al. Communication-efficient learning of deep networks from decentralized data. PMLR, 2017.
 - FedSGD
 - FedAVG
- Yin et al. Byzantine-robust distributed learning: Towards optimal statistical rates. ICML, 2018.
 - Median
 - Trim-mean

FedSGD

- FedSGD: Update the model locally for one epoch then send back to the central server.
- ullet FedSGD: The global model update: $m{w}^{t+1} \leftarrow m{w}^t \eta \cdot \sum_k^K rac{n_k}{n} m{g}_k$

 \mathbf{w}^t : weight of the global model at round t

 η : learning rate

K: number of local users selected to participate the aggregation

 n_k : number of samples on user k

 $n: \sum_{k}^{K} n_k$

 \mathbf{g}_k : gradient from user k

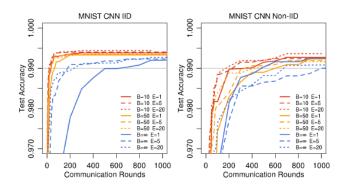
FedAVG

- FedAVG: Update the model locally for several epochs then send back the new model
- FedAVG:

```
Each user first do: \boldsymbol{w}^{t+1,k} \leftarrow \boldsymbol{w}^t - \eta \boldsymbol{g}_k (multiple times) 
The global model update: \boldsymbol{w}^{t+1} \leftarrow \sum_{k}^{K} \frac{n_k}{n} \boldsymbol{w}^{t+1,k} 
\boldsymbol{w}^{t+1}: weight of the global model at round t+1 
\boldsymbol{w}^{t+1,k}: weight of the local model on user k at round t+1
```

Performance

- E: number of local epochs. E = 1: FedSGD
- B: batch size of local training



Issues

- Security: no control of the data
- Data heterogeneity: violation of I.I.D. assumption (Non-IID)

Robust Aggregation

What if some local data are mislabelled? Robust Aggregation Methods:

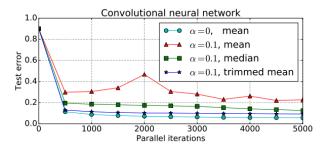
- Median: Yin et al. (2018), coordinate-wise median among the weight vectors of selected users.
- 2 Trim-mean: Yin et al. (2018), coordinate-wise mean with trimmed values.

Problem:

performance degradation

Robust Aggregation: Performance

• α : proportion of wrong data



ullet When lpha > 0, robust aggregation methods perform better

Conclusions

- Federated learning
- Aggregation algorithms

Questions?