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Recap: Transformer for NLP

How can we apply it to computer vision?
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Vision Transformer (ViT)
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Vision Transformer (ViT)

Partition input image into K × K patches

A linear projection to transform each patch to feature (no convolution)

Pass tokens into Transformer

(Dosovitskiy et al., 2020, “An Image is Worth 16x16 Words: Transformers for Image Recognition

at Scale”)
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ViT: Image processing

Partition input image into K × K patches
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ViT: Projection

Flatten and projection to feature vector (no convolution)
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ViT: Positional encoding

Add positional encoding
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ViT: Positional encoding

For a maximum sequence length M and embedding dimension d

Positional matrix: Epos ∈ Rd×M

Every column corresponds to one position

DNN can learn it!
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Learnable positional embedding

Pros:

Potentially capturing more complex positional relationships.

Simple to implement and integrate into existing models.

Cons:

Limits handling of longer sequences.

Requires learning additional parameters.
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ViT: Class embedding

Only outputs related to class embedding are fed into the MLP head
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Vision Transformer (ViT) Techniques

Patches are non-overlapping in the original ViT

N × N image ⇒ (N/K )2 tokens

Smaller patch size ⇒ more input tokens

Higher computation (memory) cost, (usually) higher accuracy

Use 1D (learnable) positional embedding

Inference with higher resolution:

Keep the same patch size, which leads to longer sequence

Use learnable class embedding
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ViT Performance

ViT outperforms CNN with large pretraining

BiT (2020): a SOTA CNN architecture
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Attention maps of ViT (to input)
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Deit

Deit (Touvron et al., 2021):

Distillation token to learn from a
CNN teacher

Match the output correspond to
the distillation token to the output
of a teacher network

Learn from the CNN teachers who
perform better on smaller datasets
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Deit Performance

Can ViT outperform CNN on ImageNet without pretraining?

Train on ImageNet-1k train set

Throughput vs. Accuracy:
Throughput: number of images processed per unit time
Accuracy: top-1 accuracy on ImageNet validation data
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ViT vs. ResNet

ViT tends to converge to sharper regions than ResNet

(Li et al., 2018, “Visualizing the loss land- scape of neural nets”)
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“Sharpness” is related to generalization

Testing can be viewed as a slightly perturbed training distribution

Sharp minimum ⇒ performance degrades significantly from training to
testing
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Sharpness Aware Minimization (SAM)

Optimize the worst-case loss within a small neighborhood

min
w

max
∥δ∥2≤ϵ

L(w + δ)

ϵ is a small constant (hyper-parameter)

Use 1-step gradient ascent to approximate inner max:

δ̂ = arg max
∥δ∥2≤ϵ

L(w + δ)

Conduct the following update for each iteration:

w ← w − α∇L(w + δ̂)

(Foret et al., 2020, “Sharpness-Aware Minimization for Efficiently Improving Generalization”)
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Sharpness Aware Minimization (SAM)

SAM is a natural way to penalize sharpness region (but requires some
computational overhead)
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SAM Performance

When both trained by SAM, ViT outperforms ResNet on ImageNet

(without pretraining, strong augmentation, distillation)

(Chen et al., 2021, “When vision transformers outperform ResNets without pre-training or strong

data augmentations”)
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ViT v.s. ResNet (representation power)

Let’s compare one ViT layer vs one convolution layer

Reception field: (which input neurons can affect an output neuron)

CNN: some subarea of image (kernel size)
Self-attention: the whole image
⇒ there exists self-attention function that cannot be captured by
convolution
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Conclusions

A brief introduction of Vision Transformer.

Questions?


