STOR566: Introduction to Deep Learning Lecture 17: Transformers for Vision

Yao Li UNC Chapel Hill

Nov 5, 2024

Materials are from Deep Learning (UCLA)

<□ > < @ > < ≧ > < ≧ > ≧ の Q @ 1/22

Recap: Transformer for NLP



How can we apply it to computer vision?

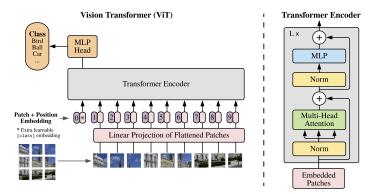
<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 2/22

Vision Transformer (ViT)

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q O 3/22

Vision Transformer (ViT)

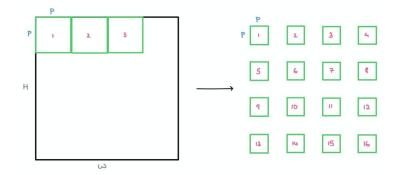
- Partition input image into $K \times K$ patches
- A linear projection to transform each patch to feature (no convolution)
- Pass tokens into Transformer



(Dosovitskiy et al., 2020, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale") $(\Box \Rightarrow \langle \Box \Rightarrow \langle \Xi \Rightarrow \langle \Xi \Rightarrow \rangle \equiv \langle \Im \land \langle \odot \rangle \langle \langle 4/22 \rangle \langle 2 \rangle$

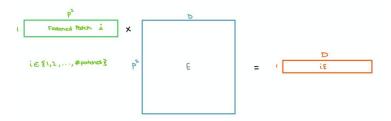
ViT: Image processing

• Partition input image into $K \times K$ patches



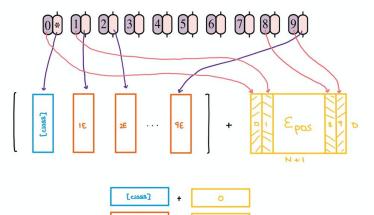
ViT: Projection

• Flatten and projection to feature vector (no convolution)



ViT: Positional encoding

• Add positional encoding



÷

Ξ

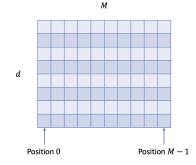
18

96

<□> < □> < □> < □> < 三> < 三> < 三> < 三 < ○ < ?/22

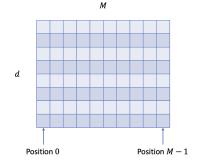
ViT: Positional encoding

- For a maximum sequence length M and embedding dimension d
- Positional matrix: $E_{pos} \in R^{d \times M}$
- Every column corresponds to one position



ViT: Positional encoding

- For a maximum sequence length M and embedding dimension d
- Positional matrix: $E_{pos} \in R^{d \times M}$
- Every column corresponds to one position



DNN can learn it!

Pros:

• Potentially capturing more complex positional relationships.

<□> < @> < E> < E> E の Q @ 9/22

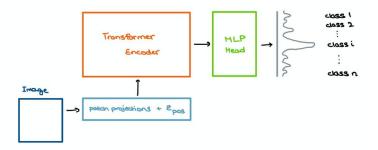
• Simple to implement and integrate into existing models.

Cons:

- Limits handling of longer sequences.
- Requires learning additional parameters.

ViT: Class embedding

• Only outputs related to class embedding are fed into the MLP head



◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ≧ の Q (* 10/22)

Vision Transformer (ViT) Techniques

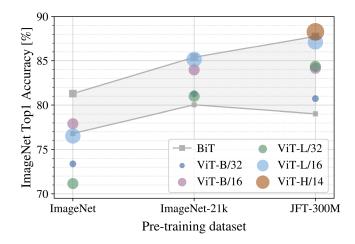
- Patches are non-overlapping in the original ViT
- N imes N image $\Rightarrow (N/K)^2$ tokens
- Smaller patch size \Rightarrow more input tokens
 - Higher computation (memory) cost, (usually) higher accuracy
- Use 1D (learnable) positional embedding
- Inference with higher resolution:
 - Keep the same patch size, which leads to longer sequence

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 11/22

• Use learnable class embedding

ViT Performance

ViT outperforms CNN with large pretraining

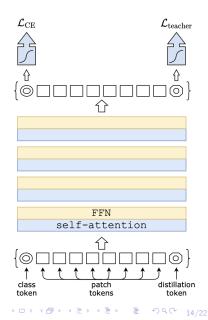


BiT (2020): a SOTA CNN architecture

Attention maps of ViT (to input)

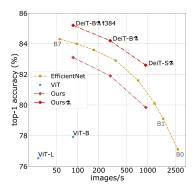
Deit

- Deit (Touvron et al., 2021):
 - Distillation token to learn from a CNN teacher
 - Match the output correspond to the distillation token to the output of a teacher network
 - Learn from the CNN teachers who perform better on smaller datasets



Deit Performance

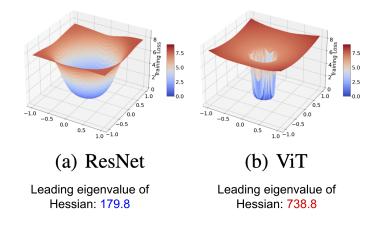
- Can ViT outperform CNN on ImageNet without pretraining?
- Train on ImageNet-1k train set
- Throughput vs. Accuracy:
 - Throughput: number of images processed per unit time
 - Accuracy: top-1 accuracy on ImageNet validation data



		Fine-tuning	Rand-Augment	AutoAug			Erasing	Stoch. Depth	Repeated Aug.	Dropout	Exp. Moving Avg.	top-1 accuracy	
Ablation on↓	Pre-training				Mixup	CutMix						pre-trained 2242	fine-tuned 384 ²
none: DeiT-B	adamw	adamw	1	x	1	1	1	1	1	×	x	81.8 ±0.2	83.1 ± 0.1
optimizer	SGD adamw	adamw SGD	1	× ×	1	1	1	1	1	× ×	× ×	74.5 81.8	77.3 83.1
data augmentation	adamw	adamw	×	X	1	1	1	1	~	X	Х	79.6	80.4
	adamw	adamw	×	~	~	~	1	1	1	×	Х	81.2	81.9
	adamw adamw	adamw adamw	1	X	×	×	1	1	1	×	X	78.7 80.0	79.8 80.6
	adamw	adamw	1	x	×	Ŷ	1	1	1	x	x	75.8	76.7
regularization	adamw	adamw	. /	Х	1	1	×	1	1	X	Х	4.3*	0.1
	adamw	adamw	1	Х	1	\checkmark	1	×	1	×	Х	3.4*	0.1
	adamw	adamw	1	×	1	\checkmark	1	~	×	×	X	76.5	77.4
	adamw	adamw	1	×	~	~	1	1	1	1	×	81.3	83.1
	adamw	adamw	V .	X		~	1		~	X	1	81.9	83.1

ViT vs. ResNet

• ViT tends to converge to sharper regions than ResNet



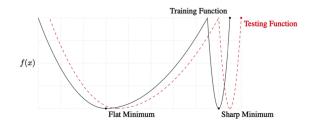
■ つへで 16/22

▶ < ∃ >

(Li et al., 2018, "Visualizing the loss land- scape of neural nets")

"Sharpness" is related to generalization

- Testing can be viewed as a slightly perturbed training distribution
- $\bullet\,$ Sharp minimum $\Rightarrow\,$ performance degrades significantly from training to testing



◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ● ● ● ● ● 17/22

Figure from (Keskar et al., 2017)

Sharpness Aware Minimization (SAM)

• Optimize the worst-case loss within a small neighborhood

 $\min_{w} \max_{\|\delta\|_2 \leq \epsilon} L(w + \delta)$

- ϵ is a small constant (hyper-parameter)
- Use 1-step gradient ascent to approximate inner max:

$$\hat{\delta} = \arg \max_{\|\delta\|_2 \le \epsilon} L(w + \delta)$$

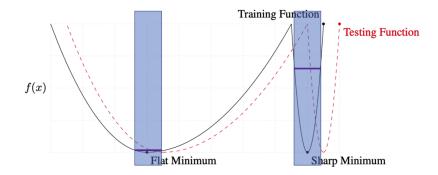
• Conduct the following update for each iteration:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \alpha \nabla \boldsymbol{L}(\boldsymbol{w} + \hat{\delta})$$

(Foret et al., 2020, "Sharpness-Aware Minimization for Efficiently Improving Generalization")

Sharpness Aware Minimization (SAM)

SAM is a natural way to penalize sharpness region (but requires some computational overhead)



< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 · の Q ℃ 19/22

SAM Performance

• When both trained by SAM, ViT outperforms ResNet on ImageNet (without pretraining, strong augmentation, distillation)

Model	#params	#params Throughput (img/sec/core)		ImageNet Real		ImageNet-R	ImageNet-C					
ResNet												
ResNet-50-SAM	25M	2161	76.7 (+0.7)	83.1 (+0.7)	64.6 (+1.0)	23.3 (+1.1)	46.5 (+1.9)					
ResNet-101-SAM	44M	1334	78.6 (+0.8)	84.8 (+0.9)	66.7 (+1.4)	25.9 (+1.5)	51.3 (+2.8)					
ResNet-152-SAM	60M	935	79.3 (+0.8)	84.9 (+0.7)	67.3 (+1.0)	25.7 (+0.4)	52.2 (+2.2)					
ResNet-50x2-SAM	98M	891	79.6 (+1.5)	85.3 (+1.6)	67.5 (+1.7)	26.0 (+2.9)	50.7 (+3.9)					
ResNet-101x2-SAM	173M	519	80.9 (+2.4)	86.4 (+2.4)	69.1 (+2.8)	27.8 (+3.2)	54.0 (+4.7)					
ResNet-152x2-SAM	236M	356	81.1 (+1.8)	86.4 (+1.9)	69.6 (+2.3)	28.1 (+2.8)	55.0 (+4.2)					
Vision Transformer												
ViT-S/32-SAM	23M	6888	70.5 (+2.1)	77.5 (+2.3)	56.9 (+2.6)	21.4 (+2.4)	46.2 (+2.9)					
ViT-S/16-SAM	22M	2043	78.1 (+3.7)	84.1 (+3.7)	65.6 (+3.9)	24.7 (+4.7)	53.0 (+6.5)					
ViT-S/14-SAM	22M	1234	78.8 (+4.0)	84.8 (+4.5)	67.2 (+5.2)	24.4 (+4.7)	54.2 (+7.0)					
ViT-S/8-SAM	22M	333	81.3 (+5.3)	86.7 (+5.5)	70.4 (+6.2)	25.3 (+6.1)	55.6 (+8.5)					
ViT-B/32-SAM	88M	2805	73.6 (+4.1)	80.3 (+5.1)	60.0 (+4.7)	24.0 (+4.1)	50.7 (+6.7)					
ViT-B/16-SAM	87M	863	79.9 (+5.3)	85.2 (+5.4)	67.5 (+6.2)	26.4 (+6.3)	56.5 (+9.9)					
MLP-Mixer												
Mixer-S/32-SAM	19M	11401	66.7 (+2.8)	73.8 (+3.5)	52.4 (+2.9)	18.6 (+2.7)	39.3 (+4.1)					
Mixer-S/16-SAM	18M	4005	72.9 (+4.1)	79.8 (+4.7)	58.9 (+4.1)	20.1 (+4.2)	42.0 (+6.4)					
Mixer-S/8-SAM	20M	1498	75.9 (+5.7)	82.5 (+6.3)	62.3 (+6.2)	20.5 (+5.1)	42.4 (+7.8)					
Mixer-B/32-SAM	60M	4209	72.4 (+9.9)	79.0 (+10.9)	58.0 (+10.4)	22.8 (+8.2)	46.2 (12.4)					
Mixer-B/16-SAM	59M	1390	77.4 (+11.0)	83.5 (+11.4)	63.9 (+13.1)	24.7 (+10.2)	48.8 (+15.0)					
Mixer-B/8-SAM	64M	466	79.0 (+10.4)	84.4 (+10.1)	65.5 (+11.6)	23.5 (+9.2)	48.9 (+16.9)					

(Chen et al., 2021, "When vision transformers outperform ResNets without pre-training or strong data augmentations")

ViT v.s. ResNet (representation power)

- Let's compare one ViT layer vs one convolution layer
- Reception field: (which input neurons can affect an output neuron)
 - CNN: some subarea of image (kernel size)
 - Self-attention: the whole image
 - $\bullet \; \Rightarrow \;$ there exists self-attention function that cannot be captured by convolution

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusions

• A brief introduction of Vision Transformer.

Questions?

< □ ▶ < @ ▶ < ≣ ▶ < ≣ ▶ E の Q @ 22/22