STOR566: Introduction to Deep Learning Lecture 17: Transformer

Yao Li
UNC Chapel Hill

Oct 27, 2022

Neural Machine Translation

Neural Machine Translation (NMT)

- Out the translated sentence from an input sentence
- Training data: a set of input-output pairs (supervised setting)
- Encoder-decoder approach:
- Encoder: Use (RNN/LSTM) to encode the input sentence input a latent vector
- Decoder: Use (RNN/LSTM) to generate a sentence based on the latent vector

Neural Machine Translation

RNN: Neural Machine Translation

- Start input of the decoder?
- When to stop?

These are the predicted words/outputs at each timestep

picture from https://medium.com/analytics-vidhya/encoder-decoder-seq2seq-models-clearly-explained-c34186fbf49b

Attention in NMT

- Usually, each output word is only related to a subset of input words (e.g., for machine translation)
- Let \boldsymbol{u} be the current decoder latent state $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ be the latent sate for each input word
- Compute the weight of each state by

$$
\boldsymbol{p}=\operatorname{Softmax}\left(\boldsymbol{u}^{T} \boldsymbol{v}_{1}, \ldots, \boldsymbol{u}^{T} \boldsymbol{v}_{n}\right)
$$

- Compute the context vector by $V \boldsymbol{p}=p_{1} \boldsymbol{v}_{1}+\cdots+p_{n} \boldsymbol{v}_{n}$

Attention in NMT

(Figure from https://towardsdatascience.com/

Transformer

Transformer

- An architecture that relies entirely on attention without using CNN/RNN
- Proposed in "Attention Is All You Need" (Vaswani et al., 2017)
- Initially used for neural machine translation

Encoder and Decoder

- Self attention layer: the main architecture used in Transformer
- Decoder: will have another attention layer to help it focuses on relevant parts of input sentences.

Encoder

- Each word has a corresponding "latent vector" (initially the word embedding for each word)
- Each layer of encoder:
- Receive a list of vectors as input
- Passing these vectors to a self-attention layer
- Then passing them into a feed-foward layer
- Output a list of vectors

Self-attention layer

- Main idea: The actual meaning of each word may be related to other words in the sentence
- The actual meaning (latent vector) of each word is a weighted (attention) combination of other words (latent vectors) in the sentences

Self-attention layer

- Input latent vectors: x_{1}, \ldots, x_{n}
- Self-attention parameters: W^{Q}, W^{K}, W^{V} (weights for query, key, value)
- For each word i, compute
- Query vector: $\boldsymbol{q}_{i}=\boldsymbol{x}_{i} W^{Q}$
- Key vector: $\boldsymbol{k}_{i}=\boldsymbol{x}_{i} W^{K}$
- Value vector: $\boldsymbol{v}_{i}=\boldsymbol{x}_{i} W^{V}$

Self-attention layer

- For each word i, compute the scores to determine how much focus to place on other input words
- The attention score for word j to word $i: \boldsymbol{q}_{i}^{T} \boldsymbol{k}_{j}$

Input
Embedding

Queries

Keys

Values

Score

Self-attention layer

- For each word i, the output vector

Matrix form

$$
Q=X W^{Q}, K=X W^{K}, V=X W^{V}, \quad Z=\operatorname{softmax}\left(Q K^{T}\right) V
$$

$$
=\square^{z}
$$

Multiple heads

- Multi-headed attention: use multiple set of (key, value, query) weights
- Each head will output a vector Z_{i}

Multiply with weight matrix to reshape

- Gather all the outputs Z_{1}, \ldots, Z_{k}
- Multiply with a weight matrix to reshape
- Then pass to the next fully connected layer

1) Concatenate all the attention heads

2) Multiply with a weight matrix W° that was trained jointly with the model

X

Overall architecture

1) This is our
2) We embed input sentence* each word*

Thinking
Machines

3) Split into 8 heads.

We multiply X or
R with weight matrices
4) Calculate attention using the resulting Q/K/V matrices
5) Concatenate the resulting Z matrices, then multiply with weight matrix W° to produce the output of the layer

* In all encoders other than \#0, we don't need embedding.
We start directly with the output of the encoder right below this one

Position encoding

- The above architecture ignores the sequential information
- Add a position encoding vector to each $\boldsymbol{x}_{\boldsymbol{i}}$ (according to \boldsymbol{i})

EMBEDDING
WITH TIME

POSITIONAL

EMBEDDINGS

SIGNAL ENCODING

INPUT

Je

suis

étudiant

Position encoding

- Sin/cosine functions with different wavelengths (used in the original Transformer)

$$
P(k, i)=\sin \left(\frac{k}{n^{2 i / d}}\right), P(k, i)=\cos \left(\frac{k}{n^{2 i / d}}\right)
$$

- smooth, parameter-free, inductive
- k : position, $i: 0<i<d / 2$, n : user-defined scalar, 10,000 in the original paper

Sequence	Index of token, k		Positional Encoding Matrix with $d=4, n=100$			
			$i=0$	$i=0$	$i=1$	$i=1$
1		$0 \rightarrow$	$\begin{aligned} P_{00} & =\sin (0) \\ & =0 \end{aligned}$	$\begin{gathered} \mathrm{P}_{001}=\cos (0) \\ =1 \end{gathered}$	$\begin{aligned} \mathrm{P}_{02}= & =\sin (0) \\ & =0 \end{aligned}$	$\begin{gathered} \mathrm{P}_{03}=\cos (0) \\ =1 \end{gathered}$
am		$1 \rightarrow$	$\begin{aligned} & \mathrm{P}_{10}=\sin (1 / 1) \\ &= 0.84 \end{aligned}$	$\begin{gathered} \mathrm{P}_{11}=\cos (1 / 1) \\ =0.54 \end{gathered}$	$\begin{aligned} \mathrm{P}_{12}=\sin (1 / 10) \\ =0.10 \end{aligned}$	$\begin{aligned} \mathrm{P}_{13} & =\cos (1 / 10) \\ & =1.0 \end{aligned}$
a	\rightarrow	$2 \rightarrow$	$\begin{gathered} \mathrm{P}_{20}=\sin (2 / 1) \\ =0.91 \end{gathered}$	$\begin{gathered} \mathrm{P}_{21}=\cos (2 / 1) \\ =-0.42 \end{gathered}$	$\begin{gathered} \mathrm{P}_{22}=\sin (2 / 10) \\ =0.20 \end{gathered}$	$\begin{aligned} \mathrm{P}_{23} & =\cos (2 / 10) \\ & =0.98 \end{aligned}$
Robot	\rightarrow	3	$\begin{aligned} & \mathrm{P}_{30}=\sin (3 / 1) \\ &= 0.14 \end{aligned}$	$\begin{gathered} \mathrm{P}_{31}=\cos (3 / 1) \\ =-0.99 \end{gathered}$	$\begin{gathered} \mathrm{P}_{32}=\sin (3 / 10) \\ =0.30 \end{gathered}$	$\begin{aligned} \mathrm{P}_{33} & =\cos (3 / 10) \\ & =0.96 \end{aligned}$

The Residuals

- Residual connection and Normalization

Decoder

- K and V from the final encoder layer used by all the encoder-decoder attention layers in the decoding part.
- Decoding sequentially not parallelly
- Attention layer only uses information from previous positions

Conclusions

- A review of RNN and NMT
- A brief introduction of Transformer.

Questions?

