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Neural Machine Translation



Neural Machine Translation (NMT)

@ Out the translated sentence from an input sentence
e Training data: a set of input-output pairs (supervised setting)

@ Encoder-decoder approach:
o Encoder: Use (RNN/LSTM) to encode the input sentence input a latent

vector
o Decoder: Use (RNN/LSTM) to generate a sentence based on the latent

vector
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Neural Machine Translation
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@ Start input of the decoder?
@ When to stop?

These are the predicted words/outputs at each timestep
f 1
Outputs -> ravi de vous rencontrer <END>
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states of

encoder h These

t final

internal
states of
decoder
are
discarded

Inputs > <START>  ravi de vous  rencontrer

timesteps

picture from https://medium.com/analytics-vidhya/encoder-decoder-seq2seq-models-clearly-explained-c34186fbf49b
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Attention in NMT

Usually, each output word is only related to a subset of input words

(e.g., for machine translation)

@ Let u be the current decoder latent state
vi,...,V, be the latent sate for each input word
@ Compute the weight of each state by
p= Softmax(uTvl, e uTv,,)

Compute the context vector by Vp = pivi + -+ + pavp
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https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism
https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism

Transformer

Materials are from Jay Alammar's Blog



@ An architecture that relies entirely on attention without using
CNN/RNN

@ Proposed in “Attention Is All You Need” (Vaswani et al., 2017)
@ Initially used for neural machine translation
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@ Self attention layer: the main architecture used in Transformer

@ Decoder: will have another attention layer to help it focuses on
relevant parts of input sentences.
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@ Each word has a corresponding “latent vector” (initially the word
embedding for each word)

@ Each layer of encoder:

Receive a list of vectors as input

Passing these vectors to a self-attention layer

o
e Then passing them into a feed-foward layer
o Output a list of vectors
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Self-attention layer

@ Main idea: The actual meaning of each word may be related to other
words in the sentence

@ The actual meaning (latent vector) of each word is a weighted
(attention) combination of other words (latent vectors) in the sentences

Layer:| 5 §| Attention:| Input - Input 5
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Cross_ cross_
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because_ because_
it_ it_
was_ was_
too_ too_
tire tire
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o Input latent vectors: xy, ..., X,
o Self-attention parameters: WQ, WK, WV (weights for query, key,
value)
@ For each word i, compute
o Query vector: q; = x;W@®
o Key vector: k; = x; WK
o Value vector: v; = x; WV

Input Thinking Machines

Embedding x: [ x. [
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@ For each word i, compute the scores to determine how much focus to
place on other input words

o The attention score for word j to word i: q/ k;

Input Thinking Machines
Embedding X1 _ X2
Queries q1 - qz -
Keys kO ke [
Values \2] - V2 -
Score g1 e ki=112 Q1o k2 =96
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@ For each word i, the output

> sivi, i
j

vector

= softmax(q,-Tkl, e q,-Tk,,)
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Q=XWQ, K=xwWK v=XxWVY Z=softmax(QKT)V
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@ Each head will output a vector Z;

ATTENTION HEAD #0
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Calculating attention separately in
eight different attention heads

e Multi-headed attention: use multiple set of (key, value, query) weights
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HEAD #7
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o Gather all the outputs 73, .

L) Zk
o Multiply with a weight matrix to reshape

@ Then pass to the next fully connected layer

1) Concatenate all the attention heads

Zo

2) Multiply with a weight
matrix W that was trained
Z4 Z> Z: 24 Zs Zs Z7 jointly with the model
R R R R x
3) The result would be the ” matrix that captures information
from all the attention heads. We can send this forward to the FFNN
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ing 7 matrices,

5)C the

4) Calculate
using the resulting
Q/K/V matrices

3) Split into 8 heads.
We multiply X or
R with weight matrices

1) This is our 2) We embed
input sentence* each word*

X Woo
Thinking WK Y Qo
Machines Wo Ko
Vo
W@
*In all encoders other than #0, WK Qi
we don't need embedding. WiV K{,
1

We start directly with the output
of the encoder right below this one

R

then multiply with weight matrix W/° to
produce the output of the layer
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@ The above architecture ignores the sequential information

e Add a position encoding vector to each x; (according to i)

(
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Position encoding

@ Sin/cosine functions with different wavelengths (used in the original
Transformer)

. . . k
P(k,l):SIH ,P(k,l):COS W

n2i/d

e smooth, parameter-free, inductive

e k: position, i: 0 < i< d/2, n: user-defined scalar, 10,000 in the original
paper

Positional Encoding

Index ° X
Sequence  of token, Matrix with d=4, n=100
" i=o i=0 i=1 i=1
Poo=sin(0) Po1=cos(0) Poz=sin(0) Pos=cos(0)
I — 0 = _9 =1 -0 -
Pio=sin(1/1) = Pi1=cos(1/1) Pi2=sin(1/10) P1s=cos(1/10)
am — 1 =0.84 = 054 = 0.10 =10
. Pao=sin(2/1)  Pzi=cos(2/1) Pz=sin(2/10) Pas=cos(2/10)
a 2 = 0.91 = -0.42 =020 = 0.98
_, Puo=sin(3/1)  Pa=cos(3/1) Pa=sin(3/10) Ps=cos(3/10)
Robot — 3 = 0.14 = -0.99 = 0.30 =096

Positional Encoding Matrix for the sequence ‘I am a robot’



@ Residual connection and Normalization

ENCODER #1
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Batch Normalization
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picture from https://www.pinecone.io/learn/batch-layer-normalization/




Layer Normalization
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picture from https://www.pinecone.io/learn/batch-layer-normalization/



@ Decoder: Self attention layer + Encoder-Decoder Attention Layer +
Feed Forward

DECODER 4
( Feed Forward )
ENCODER Yy
1 4
( Feed Forward ) ( Encoder-Decoder Attention J
4 3
( Self-Attention ) (

Self-Attention

: )

@ New: Encoder-Decoder Attention Layer

DA 25/30



Encoder-decoder attention layer

@ K and V from the final encoder layer used by all the encoder-decoder
attention layers in the decoding part.

@ @ query vectors produced by the decoder inputs will be used with K
and V to produce the output of encoder-decoder attention layer.

Decoding time step: 1 2 3 4(5)6 OUTPUT I am a student <end of sentence>
Linear + Softmax
R o o o @

ENCODERS DECODERS
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EMBEDDINGS 0

Y r PREVIOUS am a student
INPUT OUTPUTS



output sequence

@ Self-attention layer only uses information from previous positions in the
@ Mask future positions with —oo

Decoding time step: 1@3 456

OUTPUT

n mmm mmm O Ve @ Linear+TSoftmax )
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@ Decoding parallelly

@ Mask future positions with —oo

ﬂnsfonner
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@ Decoding sequentially not parallelly

ﬁnsfcnner
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@ A review of RNN and NMT

@ A brief introduction of Transformer.

Questions?
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