Yao Li
UNC Chapel Hill

Oct 31, 2024

Materials are from Deep Learning (UCLA) and Jay Alammar’s Blog

DA™

1/30

Neural Machine Translation

Neural Machine Translation (NMT)

@ Out the translated sentence from an input sentence
e Training data: a set of input-output pairs (supervised setting)

@ Encoder-decoder approach:
o Encoder: Use (RNN/LSTM) to encode the input sentence input a latent

vector
o Decoder: Use (RNN/LSTM) to generate a sentence based on the latent

vector

Awesome sauce

X r X,

[oohoo] [od'okoo]

Neural Machine Translation

SRLIHLE
R

e = (Economic, growth, has, slowed, down, in, recent, years, .)

LSTM

@ Start input of the decoder?
@ When to stop?

These are the predicted words/outputs at each timestep
f 1
Outputs -> ravi de vous rencontrer <END>

r t 1t 1 1

Final internal

states of

encoder h These

t final

internal
states of
decoder
are
discarded

Inputs > <START> ravi de vous rencontrer

timesteps

picture from https://medium.com/analytics-vidhya/encoder-decoder-seq2seq-models-clearly-explained-c34186fbf49b

[m] = = =

Attention in NMT

Usually, each output word is only related to a subset of input words

(e.g., for machine translation)

@ Let u be the current decoder latent state
vi,...,V, be the latent sate for each input word
@ Compute the weight of each state by
p= Softmax(uTvl, e uTv,,)

Compute the context vector by Vp = pivi + -+ + pavp

- | \5

LYY Yoo
e S .
00 '—| 00 '-| Q00 *—| Q00 '—|
YY) ° e —o |—e
| [l l |
o Q?Q Q?. .?Q .?.
i i

(Figure from https://towardsdatascience.com/

—

—

DAt 7730

https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism
https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism

Transformer

Materials are from Jay Alammar's Blog

@ An architecture that relies entirely on attention without using
CNN/RNN

@ Proposed in “Attention Is All You Need” (Vaswani et al., 2017)
@ Initially used for neural machine translation

OUTPUT [| am a student
4
N

DECODER
DECODER
DECODER

ENCODER

DECODER

DECODER
DECODER

=] & = = E DA g3

@ Self attention layer: the main architecture used in Transformer

@ Decoder: will have another attention layer to help it focuses on
relevant parts of input sentences.

ENCODER

DECODER 4
Py (
(&

i
Feed Forward

Feed Forward

‘)
: (
(Self-Attention (

—_/

Encoder-Decoder Attention

)

Self-Attention

-)

—/

T

nae 10/30

@ Each word has a corresponding “latent vector” (initially the word
embedding for each word)

@ Each layer of encoder:

Receive a list of vectors as input

Passing these vectors to a self-attention layer

o
e Then passing them into a feed-foward layer
o Output a list of vectors

e\)

Feed Fovward Feed Forward

Neural Nelwork Neural Network
- [

[Self-Attention]
T T
Thinking Machines
oy <3 = e =

DA 11/30

Self-attention layer

@ Main idea: The actual meaning of each word may be related to other
words in the sentence

@ The actual meaning (latent vector) of each word is a weighted
(attention) combination of other words (latent vectors) in the sentences

Layer:| 5 §| Attention:| Input - Input 5

The_ The_
animal_ animal_
didn_ didn_
t_ t_
Cross_ cross_
the_ the_
street_ street_
because_ because_
it_ it_
was_ was_
too_ too_
tire tire

d d

o Input latent vectors: xy, ..., X,
o Self-attention parameters: WQ, WK, WV (weights for query, key,
value)
@ For each word i, compute
o Query vector: q; = x;W@®
o Key vector: k; = x; WK
o Value vector: v; = x; WV

Input Thinking Machines

Embedding x: [x. [

Queries o [o[E we
Keys o[o [IEE E WK
Values vi[EIEE V[E wv

u]
&)
1
n
it

DA 13/30

@ For each word i, compute the scores to determine how much focus to
place on other input words

o The attention score for word j to word i: q/ k;

Input Thinking Machines
Embedding X1 _ X2
Queries q1 - qz -
Keys kO ke [
Values \2] - V2 -
Score g1 e ki=112 Q1o k2 =96

o> S =, <> B

DA 14/30

@ For each word i, the output

> sivi, i
j

vector

= softmax(q,-Tkl, e q,-Tk,,)

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (v/d:)
Softmax

Softmax
X
Value

Sum

Thinking
x [
o [EHE
« I
v [
qie ki=112
14
0.88
v EEm
=z [N

Machines

x: (IR
qz

k2

V2

qi e ke =96
12

0.12

V2

=] 5 = = = 9DAC 15/30

Q=XWQ, K=xwWK v=XxWVY Z=softmax(QKT)V

X we Q
HEE - G - EE

Q KT

Vv

X WK K
softmax(- ’ .)-

mE - [- e T

z

X wy v - HH
e - 1 - e

«4O0>» «Fr «=)r» « >

DA 16/30

@ Each head will output a vector Z;

ATTENTION HEAD #0

Thinkin
Machines

X
HHE

ATTENTION HEAD #1

Q

- B

=

ATTENTION
HEAD #0

Zy

Thinking
Machines

ATTENTION
HEAD #1

Zy

X

l

Calculating attention separately in
eight different attention heads

e Multi-headed attention: use multiple set of (key, value, query) weights

ATTENTION
HEAD #7

Z7

DA 17/30

o Gather all the outputs 73, .

L) Zk
o Multiply with a weight matrix to reshape

@ Then pass to the next fully connected layer

1) Concatenate all the attention heads

Zo

2) Multiply with a weight
matrix W that was trained
Z4 Z> Z: 24 Zs Zs Z7 jointly with the model
R R R R x
3) The result would be the ” matrix that captures information
from all the attention heads. We can send this forward to the FFNN
4

wo

A

18/30

ing 7 matrices,

5)C the

4) Calculate
using the resulting
Q/K/V matrices

3) Split into 8 heads.
We multiply X or
R with weight matrices

1) This is our 2) We embed
input sentence* each word*

X Woo
Thinking WK Y Qo
Machines Wo Ko
Vo
W@
*In all encoders other than #0, WK Qi
we don't need embedding. WiV K{,
1

We start directly with the output
of the encoder right below this one

R

then multiply with weight matrix W/° to
produce the output of the layer

Zo

oo
Zi Z
mmn m——

DA 19/30

@ The above architecture ignores the sequential information

e Add a position encoding vector to each x; (according to i)

(

ENCODER #1

' ' ' DECODER #1
(ENCODER #0 ' . ' DECODER #0
EMBEDDING
WITH TIME
SIGNAL i [[] x[T T 1] x [T 1]
POSITIONAL
ENCODING t] [T 1T t T
+ + +
EMBEDDINGS x: [T x: (IR x: [T
INPUT Je suis étudiant
o« =, «2» =

DA 20/30

Position encoding

@ Sin/cosine functions with different wavelengths (used in the original
Transformer)

. . . k
P(k,l):SIH ,P(k,l):COS W

n2i/d

e smooth, parameter-free, inductive

e k: position, i: 0 < i< d/2, n: user-defined scalar, 10,000 in the original
paper

Positional Encoding

Index ° X
Sequence of token, Matrix with d=4, n=100
" i=o i=0 i=1 i=1
Poo=sin(0) Po1=cos(0) Poz=sin(0) Pos=cos(0)
I — 0 = _9 =1 -0 -
Pio=sin(1/1) = Pi1=cos(1/1) Pi2=sin(1/10) P1s=cos(1/10)
am — 1 =0.84 = 054 = 0.10 =10
. Pao=sin(2/1) Pzi=cos(2/1) Pz=sin(2/10) Pas=cos(2/10)
a 2 = 0.91 = -0.42 =020 = 0.98
_, Puo=sin(3/1) Pa=cos(3/1) Pa=sin(3/10) Ps=cos(3/10)
Robot — 3 = 0.14 = -0.99 = 0.30 =096

Positional Encoding Matrix for the sequence ‘I am a robot’

@ Residual connection and Normalization

ENCODER #1

4 4

C(Add & Normalize

)R

Z1 [z;
4 Add & Normalize 4
X Y4
> LayerNorm(HEEE‘ + -)

o
-

: 7
POSITIONAL <> é
ENCODING (=}

x+ (S x. [EIHEE
Thinking Machines
=} =

DA 22/30

Batch Normalization

1 Batch with 3 SaMPle.S wmean std_dev

4 || 294

323l | 047

4xs | 169

vl
P
3
$
W

333|262

Normalization across mini-batah,

?no(ependen‘tly for each feature

picture from https://www.pinecone.io/learn/batch-layer-normalization/

Layer Normalization

1 Bateh with 3 so.mple_s

fat

V| 5 &
=z 9 &

6 &

V)
¢
2
$
w

P 1
|V \\,;

meon & 2,75 3.50
std_dev 223 147 2.69

Normalization across features,
Emdepende_n‘tly for each 5amp|e

picture from https://www.pinecone.io/learn/batch-layer-normalization/

@ Decoder: Self attention layer + Encoder-Decoder Attention Layer +
Feed Forward

DECODER 4
(Feed Forward)
ENCODER Yy
1 4
(Feed Forward) (Encoder-Decoder Attention J
4 3
(Self-Attention) (

Self-Attention

:)

@ New: Encoder-Decoder Attention Layer

DA 25/30

Encoder-decoder attention layer

@ K and V from the final encoder layer used by all the encoder-decoder
attention layers in the decoding part.

@ @ query vectors produced by the decoder inputs will be used with K
and V to produce the output of encoder-decoder attention layer.

Decoding time step: 1 2 3 4(5)6 OUTPUT I am a student <end of sentence>
Linear + Softmax
R o o o @

ENCODERS DECODERS

+ t t t t t t
s oln oln oo ot et o et
SIGNAL

EMBEDDINGS 0

Y r PREVIOUS am a student
INPUT OUTPUTS

output sequence

@ Self-attention layer only uses information from previous positions in the
@ Mask future positions with —oo

Decoding time step: 1@3 456

OUTPUT

n mmm mmm O Ve @ Linear+TSoftmax)
ENCODERS ‘

EMBEDDING t +
WITH TIME

DECODERS
*
SIGNAL

oM OO OO

EMBEDDINGS

N O S EEEE
e suis étudiant PREVIOUS |
meer y OUTPUTS

[m]

=

DA 27/30

@ Decoding parallelly

@ Mask future positions with —oo

ﬂnsfonner

DA 28/30

@ Decoding sequentially not parallelly

ﬁnsfcnner

DA 29/30

@ A review of RNN and NMT

@ A brief introduction of Transformer.

Questions?

DA 30/30

