STOR566: Introduction to Deep Learning

Lecture 16: Graph Convolutional Network

Yao Li
UNC Chapel Hill

Oct 18, 2022

Graph Basics

Adjacency Matrix

Adjacency Matrix

- Given a graph of N nodes, the adjacency matrix: $A \in \mathbb{R}^{N \times N}$
- A of the example graph: $\left(\begin{array}{cccccc}0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0\end{array}\right)$

Node Attribute Matrix

Alice: gender, age, education,
 hobby, movie, etc.

- Each node is associated with a D-dimensional feature vector.
- The node attribute matrix: $X \in \mathbb{R}^{N \times D}$
- Example: $D=1, X=\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right)$

Data Mode

https://www.britannica.com/science/molecule

- Each observation is a graph: classify chemical molecules (Batch mode)
- All observations make one graph: classify documents within a document citation network (Single mode)

Graph Convolutional Neural Network

Node classification problem

- Given a graph of N nodes, with adjacency matrix $A \in \mathbb{R}^{N \times N}$
- Each node is associated with a D-dimensional feature vector.
- $X \in \mathbb{R}^{N \times D}$: each row corresponds to the feature vector of a node
- Observe labels for a subset of nodes: $Y \in \mathbb{R}^{N \times L}$, only observe a subset of rows, denoted by Y_{S}
- Goal: Predict labels for unlabeled nodes (transductive setting)

Reminder of NN

- Given hidden input $H^{(I)}$, the hidden output is

$$
H^{(I+1)}=\sigma\left(H^{(I)} W^{(I)}+\boldsymbol{b}^{(I)}\right)
$$

- $W^{(I)}$: weight matrix of layer I
- $\boldsymbol{b}^{(I)}$: bias at layer I
- $\sigma(\cdot)$: activation function

Reminder of NN

- Given hidden input $H^{(I)}$, the hidden output is

$$
H^{(I+1)}=\sigma\left(H^{(I)} W^{(I)}+\boldsymbol{b}^{(I)}\right)
$$

- $W^{(I)}$: weight matrix of layer I
- $\boldsymbol{b}^{(I)}$: bias at layer I
- $\sigma(\cdot)$: activation function
- Replace input $H^{(I)}$ with X (the node feature matrix)

$$
H^{(1)}=\sigma\left(X W^{(0)}+\boldsymbol{b}^{(0)}\right)
$$

- Problem: Graph information not used!

Graph Convolution

- Given hidden input $H^{(I)}$, the hidden output is

$$
H^{(I+1)}=\sigma\left(P H^{(I)} W^{(I)}+\boldsymbol{b}^{(I)}\right)
$$

- P : normalized from the Adjacency Matrix A

Graph Convolution

- Given hidden input $H^{(I)}$, the hidden output is

$$
H^{(I+1)}=\sigma\left(P H^{(I)} W^{(I)}+\boldsymbol{b}^{(I)}\right)
$$

- P : normalized from the Adjacency Matrix A
- $P \in \mathbb{R}^{N \times N}$
- In the first layer: $H^{(0)}=X \in \mathbb{R}^{N \times D}$
- $W^{(0)} \in \mathbb{R}^{D \times d_{0}}$
- Ignore the bias term for simplicity in the following part

Example

- Given a graph with the following adjacency matrix and node features
- $A=\left(\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0\end{array}\right), X=\left(\begin{array}{l}0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right)$

Example

- What does $A X$ do?
- $A X=\left(\begin{array}{l}6 \\ 2 \\ 1 \\ 9 \\ 8 \\ 7\end{array}\right)$, problem?

Example: with self-loop

- How about $\tilde{A} X=(A+I) X$?
- $\tilde{A} X=\left(\begin{array}{c}6 \\ 3 \\ 3 \\ 12 \\ 12 \\ 12\end{array}\right)$, problem?

Example: degree matrix

- Degree matrix: \tilde{D}
- Self-loop is counted as 2 .
- $\tilde{D}=\operatorname{diag}(5,4,4,5,4,4)$ $\tilde{D}^{-1}=\operatorname{diag}(0.2,0.25,0.25,0.2,0.25,0.25)$

Example: degree matrix

- Degree matrix: \tilde{D}
- Self-loop is counted as 2 .
- $\tilde{D}=\operatorname{diag}(5,4,4,5,4,4)$
$\tilde{D}^{-1}=\operatorname{diag}(0.2,0.25,0.25,0.2,0.25,0.25)$
- How about $\tilde{D}^{-1} \tilde{A} X$?
- $\tilde{D}^{-1} \tilde{A} X=(1.2,0.75,0.75,2.4,3,3)^{T}$
- $P=\tilde{D}^{-1} \tilde{A}$

Graph Convolution Layer

- GCN: multiple graph convolution layers
- P : normalized version of A :

$$
\tilde{A}=A+I, \quad P=\tilde{D}^{-1} \tilde{A}
$$

- Graph convolution:
- Input: features for each node $H^{(I)} \in \mathbb{R}^{N \times D}$
- Output: features for each node $H^{(1+1)}$ after gathering neighborhood information
- Convolution: $P H^{(1)}$: Aggregate features from neighbors

$$
H^{(I+1)}=\sigma\left(P H^{(I)} W^{(I)}\right)
$$

$W^{(I)}$ is the weights for the linear layer
$\sigma(\cdot)$: usually ReLU function

Graph convolutional network

- Initial features $H^{(0)}:=X$
- For layer $I=0, \ldots, L$

$$
Z^{(I+1)}=P H^{(I)} W^{(I)}, \quad H^{(I+1)}=\sigma\left(Z^{(I+1)}\right)
$$

- Use final layer feature $H^{(L)} \in \mathbb{R}^{N \times K}$ for classification:

$$
\text { Loss }=\frac{1}{|S|} \sum_{s \in S} \operatorname{loss}\left(y_{s}, H_{s}^{(L)}\right)
$$

- Each row of $Z_{s}^{(L)}$ corresponds to the output score for each label.
- Cross-entropy loss for classification.

Graph convolutional network

- Model parameters: $W^{(1)}, \cdots, W^{(L)}$
- Can be used to
- Predict unlabeled nodes in the training set
- Predict labels for a new graph
- Also, features extracted by GCN $H^{(L)}$ is usually very useful for other tasks

GCN training

- Full Gradient descent in the original paper (Kipf \& Welling, 2017):
- Need many iterations (epochs)
- Large memory requirement for storing all the intermediate embeddings
- GraphSAGE (NeurlPS'17)
- VRGCN (ICML'18)
- Cluster-GCN (KDD'19)

Conclusions

- Graph Basics
- Graph Neural Networks

Questions?

