STOR566: Introduction to Deep Learning Lecture 16: Graph Convolutional Network

Yao Li UNC Chapel Hill

Oct 18, 2022

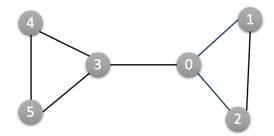
Materials are from Deep Learning (UCLA)

<□> <□> <□> <□> <=> <=> <=> <=> = のQ@ 1/18

Graph Basics

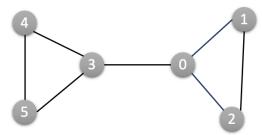
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Adjacency Matrix



< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q O 3/18

Adjacency Matrix

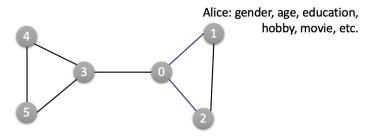


• Given a graph of N nodes, the adjacency matrix: $A \in \mathbb{R}^{N \times N}$

• A of the example graph:

1	0	1	1	1	0	0	\
	1	0	1	0	0	0	
ĺ	1	1	0	0	0	0	
	1	0	0	0	1	1	
	0	0	0	1	0	1	
ſ	0	0	0	1	1	0	Ϊ

Node Attribute Matrix



< □ ▶ < □ ▶ < 壹 ▶ < 壹 ▶ = うへで 4/18

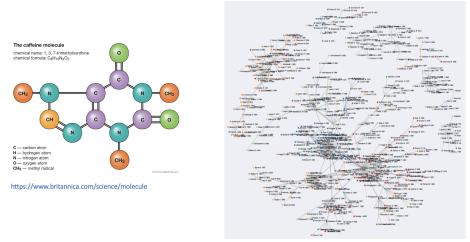
• Each node is associated with a *D*-dimensional feature vector.

~

• The node attribute matrix: $X \in \mathbb{R}^{N \times D}$

• Example:
$$D = 1, X = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

Data Mode



https://kieranhealy.org/blog/archives/2013/06/18/a-co-citation-network-for-philosophy/

- Each observation is a graph: classify chemical molecules (Batch mode)
- All observations make one graph: classify documents within a document citation network (Single mode)

Graph Convolutional Neural Network

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 6/18

Node classification problem

- Given a graph of N nodes, with adjacency matrix $A \in \mathbb{R}^{N \times N}$
- Each node is associated with a *D*-dimensional feature vector.
- $X \in \mathbb{R}^{N \times D}$: each row corresponds to the feature vector of a node
- Observe labels for a subset of nodes: $Y \in \mathbb{R}^{N \times L}$, only observe a subset of rows, denoted by Y_S

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q O 7/18

• Goal: Predict labels for unlabeled nodes (transductive setting)

Reminder of NN

• Given hidden input $H^{(I)}$, the hidden output is

$$H^{(l+1)} = \sigma \left(H^{(l)} W^{(l)} + \boldsymbol{b}^{(l)} \right)$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < · 8/18

- $W^{(I)}$: weight matrix of layer I
- **b**⁽¹⁾: bias at layer 1
- $\sigma(\cdot)$: activation function

Reminder of NN

• Given hidden input $H^{(I)}$, the hidden output is

$$H^{(l+1)} = \sigma \left(H^{(l)} W^{(l)} + \boldsymbol{b}^{(l)} \right)$$

- W⁽¹⁾: weight matrix of layer I
- **b**⁽¹⁾: bias at layer 1
- $\sigma(\cdot)$: activation function
- Replace input $H^{(l)}$ with X (the node feature matrix)

$$H^{(1)} = \sigma \left(X W^{(0)} + \boldsymbol{b}^{(0)} \right)$$

• Problem: Graph information not used!

Graph Convolution

• Given hidden input $H^{(I)}$, the hidden output is

$$H^{(l+1)} = \sigma \left(\mathbf{P} H^{(l)} W^{(l)} + \mathbf{b}^{(l)} \right)$$

• P: normalized from the Adjacency Matrix A

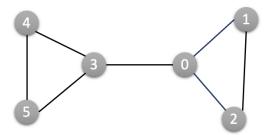
Graph Convolution

• Given hidden input $H^{(I)}$, the hidden output is

$$H^{(l+1)} = \sigma \left(\mathbf{P} H^{(l)} W^{(l)} + \mathbf{b}^{(l)} \right)$$

- P: normalized from the Adjacency Matrix A
- $P \in \mathbb{R}^{N \times N}$
- In the first layer: $H^{(0)} = X \in \mathbb{R}^{N \times D}$
- $W^{(0)} \in \mathbb{R}^{D imes d_0}$
- Ignore the bias term for simplicity in the following part

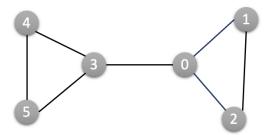
Example



• Given a graph with the following adjacency matrix and node features

•
$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}, X = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$

Example

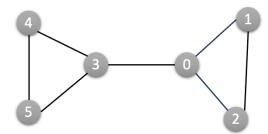


<ロト < 母ト < 臣 > < 臣 > 三 のへで 11/18

• What does AX do?

•
$$AX = \begin{pmatrix} 6 \\ 2 \\ 1 \\ 9 \\ 8 \\ 7 \end{pmatrix}$$
, problem?

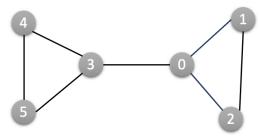
Example: with self-loop



• How about $\tilde{A}X = (A + I)X$?

•
$$\tilde{A}X = \begin{pmatrix} 6\\ 3\\ 3\\ 12\\ 12\\ 12\\ 12 \end{pmatrix}$$
, problem?

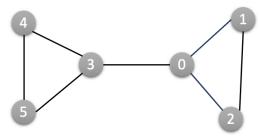
Example: degree matrix



◆□ ▶ ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ⑦ � ♡ ↓ ○ 13/18

- Degree matrix: \tilde{D}
- Self-loop is counted as 2.
- $\tilde{D} = diag(5, 4, 4, 5, 4, 4)$
 - $\tilde{D}^{-1} = \text{diag}(0.2, 0.25, 0.25, 0.2, 0.25, 0.25)$

Example: degree matrix



◆□ ▶ ◆● ▶ ◆ ■ ▶ ◆ ■ ・ ● ● の へ ● 13/18

- Degree matrix: \tilde{D}
- Self-loop is counted as 2.
- $\tilde{D} = diag(5, 4, 4, 5, 4, 4)$

$$ilde{D}^{-1} = \mathsf{diag}(0.2, 0.25, 0.25, 0.2, 0.25, 0.25)$$

- How about $\tilde{D}^{-1}\tilde{A}X$?
- $\tilde{D}^{-1}\tilde{A}X = (1.2, 0.75, 0.75, 2.4, 3, 3)^T$
- $P = \tilde{D}^{-1}\tilde{A}$

Graph Convolution Layer

- GCN: multiple graph convolution layers
- P: normalized version of A:

$$\tilde{A} = A + I, \quad P = \tilde{D}^{-1}\tilde{A}$$

- Graph convolution:
 - Input: features for each node $H^{(l)} \in \mathbb{R}^{N \times D}$
 - Output: features for each node $H^{(l+1)}$ after gathering neighborhood information
 - Convolution: *PH*⁽¹⁾: Aggregate features from neighbors

$$H^{(l+1)} = \sigma(PH^{(l)}W^{(l)}),$$

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ のQ ペ 14/18

 $W^{(l)}$ is the weights for the linear layer $\sigma(\cdot)$: usually ReLU function

Graph convolutional network

- Initial features $H^{(0)} := X$
- For layer *I* = 0, . . . , *L*

$$Z^{(l+1)} = PH^{(l)}W^{(l)}, \quad H^{(l+1)} = \sigma(Z^{(l+1)}),$$

• Use final layer feature $H^{(L)} \in \mathbb{R}^{N \times K}$ for classification:

$$\mathsf{Loss} = \frac{1}{|S|} \sum_{s \in S} \mathsf{loss}(y_s, H_s^{(L)})$$

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ■ ⑦ Q ↔ 15/18

- Each row of $Z_s^{(L)}$ corresponds to the output score for each label.
- Cross-entropy loss for classification.

Graph convolutional network

- Model parameters: $W^{(1)}, \cdots, W^{(L)}$
- Can be used to
 - Predict unlabeled nodes in the training set
 - Predict labels for a new graph
- Also, features extracted by GCN $H^{(L)}$ is usually very useful for other tasks

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ のQ ↔ 16/18

GCN training

- Full Gradient descent in the original paper (Kipf & Welling, 2017):
 - Need many iterations (epochs)
 - Large memory requirement for storing all the intermediate embeddings

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- GraphSAGE (NeurIPS'17)
- VRGCN (ICML'18)
- Cluster-GCN (KDD'19)

Conclusions

- Graph Basics
- Graph Neural Networks

Questions?

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 18/18