
1/18

STOR566: Introduction to Deep Learning
Lecture 16: Graph Convolutional Network

Yao Li
UNC Chapel Hill

Oct 18, 2022

Materials are from Deep Learning (UCLA)

2/18

Graph Basics

3/18

Adjacency Matrix

Given a graph of N nodes, the adjacency matrix: A ∈ RN×N

A of the example graph:

0 1 1 1 0 0
1 0 1 0 0 0
1 1 0 0 0 0
1 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

3/18

Adjacency Matrix

Given a graph of N nodes, the adjacency matrix: A ∈ RN×N

A of the example graph:

0 1 1 1 0 0
1 0 1 0 0 0
1 1 0 0 0 0
1 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

4/18

Node Attribute Matrix

Each node is associated with a D-dimensional feature vector.

The node attribute matrix: X ∈ RN×D

Example: D = 1,X =

0
1
2
3
4
5

5/18

Data Mode

Each observation is a graph: classify chemical molecules (Batch mode)

All observations make one graph: classify documents within a
document citation network (Single mode)

6/18

Graph Convolutional Neural Network

7/18

Node classification problem

Given a graph of N nodes, with adjacency matrix A ∈ RN×N

Each node is associated with a D-dimensional feature vector.

X ∈ RN×D : each row corresponds to the feature vector of a node

Observe labels for a subset of nodes: Y ∈ RN×L, only observe a subset
of rows, denoted by YS

Goal: Predict labels for unlabeled nodes (transductive setting)

8/18

Reminder of NN

Given hidden input H(l), the hidden output is

H(l+1) = σ
(
H(l)W (l) + b(l)

)
W (l): weight matrix of layer l

b(l): bias at layer l

σ(·): activation function

Replace input H(l) with X (the node feature matrix)

H(1) = σ
(
XW (0) + b(0)

)
Problem: Graph information not used!

8/18

Reminder of NN

Given hidden input H(l), the hidden output is

H(l+1) = σ
(
H(l)W (l) + b(l)

)
W (l): weight matrix of layer l

b(l): bias at layer l

σ(·): activation function

Replace input H(l) with X (the node feature matrix)

H(1) = σ
(
XW (0) + b(0)

)
Problem: Graph information not used!

9/18

Graph Convolution

Given hidden input H(l), the hidden output is

H(l+1) = σ
(
PH(l)W (l) + b(l)

)
P: normalized from the Adjacency Matrix A

P ∈ RN×N

In the first layer: H(0) = X ∈ RN×D

W (0) ∈ RD×d0

Ignore the bias term for simplicity in the following part

9/18

Graph Convolution

Given hidden input H(l), the hidden output is

H(l+1) = σ
(
PH(l)W (l) + b(l)

)
P: normalized from the Adjacency Matrix A

P ∈ RN×N

In the first layer: H(0) = X ∈ RN×D

W (0) ∈ RD×d0

Ignore the bias term for simplicity in the following part

10/18

Example

Given a graph with the following adjacency matrix and node features

A =

0 1 1 1 0 0
1 0 1 0 0 0
1 1 0 0 0 0
1 0 0 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

, X =

0
1
2
3
4
5

11/18

Example

What does AX do?

AX =

6
2
1
9
8
7

, problem?

12/18

Example: with self-loop

How about ÃX = (A+ I)X?

ÃX =

6
3
3
12
12
12

, problem?

13/18

Example: degree matrix

Degree matrix: D̃

Self-loop is counted as 2.

D̃ = diag(5, 4, 4, 5, 4, 4)

D̃−1 = diag(0.2, 0.25, 0.25, 0.2, 0.25, 0.25)

How about D̃−1ÃX?

D̃−1ÃX = (1.2, 0.75, 0.75, 2.4, 3, 3)T

P = D̃−1Ã

13/18

Example: degree matrix

Degree matrix: D̃

Self-loop is counted as 2.

D̃ = diag(5, 4, 4, 5, 4, 4)

D̃−1 = diag(0.2, 0.25, 0.25, 0.2, 0.25, 0.25)

How about D̃−1ÃX?

D̃−1ÃX = (1.2, 0.75, 0.75, 2.4, 3, 3)T

P = D̃−1Ã

14/18

Graph Convolution Layer

GCN: multiple graph convolution layers

P: normalized version of A:

Ã = A+ I , P = D̃−1Ã

Graph convolution:

Input: features for each node H(l) ∈ RN×D

Output: features for each node H(l+1) after gathering neighborhood
information
Convolution: PH(l): Aggregate features from neighbors

H(l+1) = σ(PH(l)W (l)),

W (l) is the weights for the linear layer
σ(·): usually ReLU function

15/18

Graph convolutional network

Initial features H(0) := X

For layer l = 0, . . . , L

Z (l+1) = PH(l)W (l), H(l+1) = σ(Z (l+1)),

Use final layer feature H(L) ∈ RN×K for classification:

Loss =
1

|S |
∑
s∈S

loss(ys ,H
(L)
s)

Each row of Z
(L)
s corresponds to the output score for each label.

Cross-entropy loss for classification.

16/18

Graph convolutional network

Model parameters: W (1), · · · ,W (L)

Can be used to

Predict unlabeled nodes in the training set
Predict labels for a new graph

Also, features extracted by GCN H(L) is usually very useful for other
tasks

17/18

GCN training

Full Gradient descent in the original paper (Kipf & Welling, 2017):

Need many iterations (epochs)
Large memory requirement for storing all the intermediate embeddings

GraphSAGE (NeurIPS’17)

VRGCN (ICML’18)

Cluster-GCN (KDD’19)

18/18

Conclusions

Graph Basics

Graph Neural Networks

Questions?

