
1/37

STOR566: Introduction to Deep Learning
Lecture 12: Generative Models

Yao Li
UNC Chapel Hill

Oct 10, 2024

2/37

Unsupervised Learning

Working with datasets without a response variable

Some Applications:

Clustering
Data Compression
Exploratory Data Analysis
Generating New Examples
...

Example: PCA, K-means, Autoencoders, GAN, etc

3/37

Autoencoder: Basic Architecture

Autoencoder: A special type of DNN where the target (response) of
each input is the input itself.

Decoder
#(%)

Encoder
'(%)

Embedding (()
Original
Input ())

Reconstructed
Output (*))

Objective:

∥x − D(E (x))∥2

Encoder: E : Rn → Rd

Decoder: D : Rd → Rn

3/37

Autoencoder: Basic Architecture

Autoencoder: A special type of DNN where the target (response) of
each input is the input itself.

Decoder
#(%)

Encoder
'(%)

Embedding (()
Original
Input ())

Reconstructed
Output (*))

Objective:

∥x − D(E (x))∥2

Encoder: E : Rn → Rd

Decoder: D : Rd → Rn

4/37

Transposed Convolution

(Figure from Dive into Deep Learning)

Multiple input and output channels: works the same as the regular
convolution

Number of weights: k1 × k2 × din × dout + dout

5/37

Transposed Convolution

(Figure from Dive into Deep Learning)

Strides are specified for the output feature map

Padding: remove rows and columns from the output

6/37

Overfitting

Overfitting is a problem

Solutions:

Bottleneck layer: a low-dimensional representation of the data (d < n)
Denoise autoencoder
Sparse autoencoder
...

7/37

Regularization

Objective:

L(x , x̂) + regularizer,

L(·, ·): captures the distance between the input (x) and the output (x̂).

Example: ∥x − x̂∥2

Regularizer example:

L1 penalty:
∑

j |hlj |
hlj : hidden output of j-th neuron in l-th layer

7/37

Regularization

Objective:

L(x , x̂) + regularizer,

L(·, ·): captures the distance between the input (x) and the output (x̂).

Example: ∥x − x̂∥2

Regularizer example:

L1 penalty:
∑

j |hlj |
hlj : hidden output of j-th neuron in l-th layer

7/37

Regularization

Objective:

L(x , x̂) + regularizer,

L(·, ·): captures the distance between the input (x) and the output (x̂).

Example: ∥x − x̂∥2

Regularizer example:

L1 penalty:
∑

j |hlj |
hlj : hidden output of j-th neuron in l-th layer

8/37

Sparse Autoencoder

Objective:

∥x − D(E (x))∥2 + λ
∑
j

|zj |

Iterate over layers.

9/37

Sparse Autoencoder

Another regularizer:

∥x − D(E (x))∥2 + λ
∑
j

KL(pj ||p̂j)

Convert value of z to [0, 1]. (e.g., sigmoid activation)

pj : probability of activation for neuron j in the bottleneck layer

p̂j =
1
B

∑B
i=1 zij

10/37

Denoising Autoencoder

Figure from Bank, Dor, Noam Koenigstein, and Raja Giryes. ”Autoencoders.” (2020).

Another regularizer:

∥x − D(E (x + δ))∥2

δ: Random noise

11/37

Denoising Autoencoder

noisy data → clean data

Learn to capture valuable features and ignore noise

12/37

Generative Model

13/37

Generative Problem

In general, a trained Vanilla auto-encoder cannot be used to generate
new data

14/37

Variational Autoencoder (VAE)

Probabilistic model: will let us generate data from the model

Encoder outputs µ and σ

Draw z̃ ∼ N(µ,σ)

Decoder decodes this latent variable z̃ to get the output

15/37

Variational Autoencoder (VAE)

3

!

4$(3|!) 6%(!|3)
7$

! 3 8!

Maximum likelihood approach: Πip(xi)
Variational lower bound as objective:

End-to-End reconstruction loss (e.g., square loss)
Regularizer: KL (qΦ(z |x)||p(z))

Objective:

L(x , x̂) + KL (qΦ(z |x)||p(z))

16/37

Variational Lower Bound

Variational lower bound:

log p(x) ≥ Eq(z |x) (log p(x |z))− KL (q(z |x)||p(z))

How to derive the variational lower bound from the likelihood?

Suggested reading: Kingma et al. (2013). Auto-encoding variational
bayes. ICLR.

17/37

Re-parameterization Trick

Figure from Jeremy Jordon Blog

Cannot back-propagate error through random samples

Reparameterization trick: replace z̃ ∼ N(µ,σ) with ϵ ∼ N(0, I),
z = ϵσ + µ

https://www.jeremyjordan.me/variational-autoencoders/

18/37

Adversarial Autoencoder

The top row is a standard autoendoer

Force the embedding space distribution towards the prior

19/37

Generated Adversarial Network

Discriminative models:

Given an image x , predict a label y
(by learning P(y | x))

Generative models:

Generate new images
Learn P(x) (or P(x , y),P(x | y))

(Goodfellow et al., 2014)

20/37

How to represent a distribution

Define the distribution implicitly

Start from a random vector z : a simple distribution (e.g., sphere
Gaussian)

Define (the sampling process of) the distribution as a function G :

z → G (z) = x

Our goal is to learn this generator function G

Example:

Gaussian with covariance matrix N(0,Σ)

z ∼ N(0, I) → Σ1/2z︸ ︷︷ ︸
G(z)

∼ N(0,Σ)

20/37

How to represent a distribution

Define the distribution implicitly

Start from a random vector z : a simple distribution (e.g., sphere
Gaussian)

Define (the sampling process of) the distribution as a function G :

z → G (z) = x

Our goal is to learn this generator function G

Example:

Gaussian with covariance matrix N(0,Σ)

z ∼ N(0, I) → Σ1/2z︸ ︷︷ ︸
G(z)

∼ N(0,Σ)

21/37

Neural network as a generator

Now we assume G is a neural network parameterized by θ

Goal: learn θ to make generated distribution similar to the data
distribution

(figure from https://openai.com/blog/generative-models/)

But how to evaluate the quality of generated distribution?

22/37

Generative Adversarial Network (GAN)

A good measurement: whether there exists a discriminator (classifier)
to distinguish real/fake images

Generative Adversarial Network (GAN): Train two networks jointly

The generator network tries to produce realistic-looking images
The discriminator network tries to classify real vs fake images

(figure fromhttps://naokishibuya.medium.com/understanding-generative-adversarial-networks)

23/37

Training objective

The discriminator’s goal: classify real/fake images

LD = Ex∼real data

[
− logD(x)

]
+ Ez

[
− log(1− D(G (z)))

]
Generator’s goal: fool the discriminator

A simple cost function for generator: the opposite of the discriminator’s

The minmax training objective:

max
G

min
D

LD(G ,D)

GAN training: alternatively update G and D

24/37

Gradient vanishing problem

max
G

min
D

Ex∼real data

[
− logD(x)

]
+ Ez

[
− log(1− D(G (z)))

]
The discriminator is usually much better than generators
(D(G (z)) → 0), this implies the gradient of generator will vanish
A modified generator loss:

LG = Ez

[
log(1− D(G (z)))

]
⇒ LG = Ez

[
− logD(G (z))

]

25/37

CNN for both generator and discriminator (DC-GAN)

Discriminator: a regular classification network

Generator: CNN with transposed convolution structure

(Radford et al., 2015)

26/37

DC-GAN results

(Figure from Raford et al., 2015)

27/37

Many improvements have been made

c-GAN (Mirza and Osindero, 2014): add class label into the generator

AC-GAN (Odena et al., 2016): discriminator classifies both real/fake
and class label

WGAN (Arjovsky et al., 2017): use Wasserstein distance

SN-GAN (Miyato et al., 2018): spectral regularization

Big-GAN (Brock et al., 2018): large batch (2048), bigger model

Fast-GAN (Liu and Hsieh, 2018), (Zhong et al., 2020): small batch
(64) can also work with adversarial training

Style-GAN1,2,3 (Karras et al., 2018; Karras et al., 2019; Karras et al.,
2021): latent code transformation, progressive growing GAN

28/37

Big-GAN results

(Figure from Brock et al., 2018)

29/37

Image-to-image translation

Cycle GAN: Zhu et al., 2017

30/37

Many applications in bioinformatics

31/37

Image-to-image translation

(The unet architecture)

32/37

Embedding Space Visualization

Commonly used visualization tools:

t-SNE (t-Distributed Stochastic Neighbor Embedding)

Van der Maaten et al. (2008). Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(11).
Available: sklearn

UMAP (Uniform Manifold Approximation and Projection)

McInnes et al. (2018). UMAP: Uniform Manifold Approximation and
Projection. Journal of Open Source Software, 3(29), 861,
Availalbe: umap-learn

PCA (Principal Component Analysis)

Available: sklearn

33/37

Examples with tSNE

Embedding space visualization for a Vanilla autoencoer and a VAE
trained on MNIST

VAE: more compact

34/37

Examples with PCA

Problem: Game Result Prediction

Figure: Heroes of the Storm and Dota 2 characters

35/37

Assumption

Assumption

We assume a team’s score can be written as

s+t =
∑
i∈I+t

wi +
∑
i∈I+t

∑
j∈I+t

vT
i vj

wi : individual ability of i-th player

vi ∈ Rd : teamwork ability of i-th player

I+t : winning team player index set

s+t : winning team score

36/37

Team Ability Visualization (PCA)

Figure: Projection of team ability vector for each character (vi) to 2-D space.
Colors represents the official categorization for these characters.

37/37

Conclusions

Autoencoder

GAN

Visualization tools

Questions?

