
1/16

STOR566: Introduction to Deep Learning
Lecture 11: NLP Pre-training

Yao Li
UNC Chapel Hill

Sep 22, 2022

Materials are from Deep Learning (UCLA)

2/16

Unsupervised pretraining for NLP

3/16

Motivation

Many unlabeled NLP data but very few labeled data

Can we use large amount of unlabeled data to obtain meaningful
representations of words/sentences?

4/16

Learning word embeddings

Use large (unlabeled) corpus to learn a useful word representation
Learn a vector for each word based on the corpus
Hopefully the vector represents some semantic meaning
Can be used for many tasks

Replace the word embedding matrix for DNN models for
classification/translation

Two different perspectives but led to similar results:
Word2vec (Mikolov et al., 2013)
PPMI (Levy et al., 2014)
Glove (Pennington et al., 2014)

5/16

Context information

Given a large text corpus, how to learn low-dimensional features to
represent a word?

For each word wi , define the “contexts” of the word as the words
surrounding it in an L-sized window:

wi−L−2,wi−L−1,wi−L, · · · ,wi−1︸ ︷︷ ︸
contexts of wi

,wi ,wi+1, · · · ,wi+L︸ ︷︷ ︸
contexts of wi

,wi+L+1, · · ·

Get a collection of (word, context) pairs, denoted by D.

6/16

Word pair

Figure from http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

7/16

Use bag-of-word model

Idea 1: Use the bag-of-word model to “describe” each word

Assume we have context words c1, · · · , cd in the corpus, compute

#(w , ci) := number of times the pair (w , ci) appears in D

For each word w , form a d-dimensional (sparse) vector to describe w

#(w , c1), · · · ,#(w , cd),

8/16

PMI/PPMI Representation

Similar to TF-IDF: Need to consider the frequency of each word and
each context

Instead of using co-ocurrent count #(w , c), we can define pointwise
mutual information:

PMI(w , c) = log(
P̂(w , c)

P̂(w)P̂(c)
) = log

#(w , c)|D|
#(w)#(c)

,

#(w) =
∑

c #(w , c): number of pairs with word w
#(c) =

∑
w #(w , c): number of pairs with word c

|D|: number of pairs in D

Positive PMI (PPMI) usually achieves better performance:

PPMI(w , c) = max(PMI(w , c), 0)

MPPMI: word feature matrix with PPMI(w , c) as element

8/16

PMI/PPMI Representation

Similar to TF-IDF: Need to consider the frequency of each word and
each context

Instead of using co-ocurrent count #(w , c), we can define pointwise
mutual information:

PMI(w , c) = log(
P̂(w , c)

P̂(w)P̂(c)
) = log

#(w , c)|D|
#(w)#(c)

,

#(w) =
∑

c #(w , c): number of pairs with word w
#(c) =

∑
w #(w , c): number of pairs with word c

|D|: number of pairs in D

Positive PMI (PPMI) usually achieves better performance:

PPMI(w , c) = max(PMI(w , c), 0)

MPPMI: word feature matrix with PPMI(w , c) as element

9/16

PPMI Matrix

10/16

Low-dimensional embedding

Perform PCA/SVD on the sparse feature matrix:

MPPMI ≈ UkΣkV
T
k

Then W SVD = UkΣk is the context representation of each word
(Each row is a k-dimensional feature for a word)

k << d

11/16

Word2vec (Mikolov et al., 2013)

A neural network model for learning word embeddings
Main idea:

Predict the target words based on the neighbors (CBOW)
Predict neighbors given the target words (Skip-gram)

12/16

CBOW

Predict the target words based on the neighbors

13/16

Skip-gram

Predict neighbors using target word

14/16

More on skip-gram

Learn the probability P(wt+j |wt): the probability to see wt+j in target
word wt ’s neighborhood

Every word has two embeddings:

vi serves as the role of target
ui serves as the role of context

Model probability as softmax:

P(o|c) = eu
T
o vc∑W

w=1 e
uTw vc

15/16

Results

The low-dimensional embeddings are (often) meaningful:

Figure from https://www.tensorflow.org/tutorials/word2vec

16/16

Conclusions

PPMI

Word2vec

Questions?

