STOR566: Introduction to Deep Learning
 Lecture 10: LSTM and GRU

Yao Li
UNC Chapel Hill

Sep 20, 2022

Problems of Classical RNN

- Hard to capture long-term dependencies

Problems of Classical RNN

- Hard to capture long-term dependencies

The cat, which already ate ..., was full

The cats, which already ate ..., were full

Problems of Classical RNN

- Hard to capture long-term dependencies

The cat, which already ate ..., was full

Gradient Vanishing of RNN

- Hard to solve (vanishing gradient problem)
- $\boldsymbol{w}^{t}=\boldsymbol{w}^{t-1}-\alpha \times \nabla f\left(\boldsymbol{w}^{t-1}\right)$

Gradient Vanishing of RNN

- Hard to solve (vanishing gradient problem)
- $\boldsymbol{w}^{t}=\boldsymbol{w}^{t-1}-\alpha \times \nabla f\left(\boldsymbol{w}^{t-1}\right)$
$\bullet\binom{0.499999}{2.100001}=\binom{0.5}{2.1}-0.01 \times\binom{ 0.0001}{-0.0001}$

Gradient Vanishing of RNN

- Hard to solve (vanishing gradient problem)

$$
s_{t}=f\left(W_{1} x_{t}+W_{2} s_{t-1}\right), \quad o_{t}=V s_{t}
$$

Let $W=\left[W_{1}, W_{2}\right]$, the gradient:

$$
\begin{aligned}
\frac{\partial L}{\partial W} & =\sum_{t=1}^{T} \frac{\partial L_{t}}{\partial W} \\
\frac{\partial L_{t}}{\partial W} & =\frac{\partial L_{t}}{\partial o_{t}} \frac{\partial o_{t}}{\partial s_{t}}\left(\Pi_{k=2}^{t} \sigma^{\prime}\left(W_{1} x_{k}+W_{2} s_{k-1}\right) W_{2}\right) \frac{\partial s_{1}}{\partial W}
\end{aligned}
$$

Gradient Vanishing of RNN

- Hard to solve (vanishing gradient problem)

$$
s_{t}=f\left(W_{1} x_{t}+W_{2} s_{t-1}\right), \quad o_{t}=V s_{t}
$$

Let $W=\left[W_{1}, W_{2}\right]$, the gradient:

$$
\begin{aligned}
\frac{\partial L}{\partial W} & =\sum_{t=1}^{T} \frac{\partial L_{t}}{\partial W} \\
\frac{\partial L_{t}}{\partial W} & =\frac{\partial L_{t}}{\partial o_{t}} \frac{\partial o_{t}}{\partial s_{t}}\left(\Pi_{k=2}^{t} \sigma^{\prime}\left(W_{1} x_{k}+W_{2} s_{k-1}\right) W_{2}\right) \frac{\partial s_{1}}{\partial W}
\end{aligned}
$$

- Solution:
- LSTM (Long Short Term Memory networks)
- GRU (Gated Recurrent Unit)
- ...

LSTM

LSTM

- RNN:

- LSTM:

LSTM Cell

sigmoid

tanh

pointwise multiplication

vector concatenation

Cell State and Hidden State

The two hidden states $\boldsymbol{h}^{(t)}$ and $\boldsymbol{c}^{(t)}$ are calculated by:

$$
\begin{aligned}
& \boldsymbol{c}^{(t)}=\boldsymbol{f}^{(t)} \circ \boldsymbol{c}^{(t-1)}+\boldsymbol{i}^{(t)} \circ \boldsymbol{z}^{(t)} \\
& \boldsymbol{h}^{(t)}=\boldsymbol{o}^{(t)} \circ \tanh \left(\boldsymbol{c}^{(t)}\right)
\end{aligned}
$$

- Cell state: $\boldsymbol{c}^{(t)}$, "memory" of the network
- Hidden state: $\boldsymbol{h}^{(t)}$, information on previous inputs
- ○: point-wise multiplication

Forget Gate

- Compute forget gate output: $\boldsymbol{f}^{(t)}=\sigma_{g}\left(\boldsymbol{W}_{1 f} \boldsymbol{x}^{(t)}+\boldsymbol{W}_{2 f} \boldsymbol{h}^{(t-1)}+\boldsymbol{b}_{f}\right)$
- Forget previous information: $\boldsymbol{f}^{(t)} \circ \boldsymbol{C}^{(t-1)}$
- σ_{g} : sigmoid activation

Cell State

$$
\boldsymbol{c}^{(t)}=\underbrace{\boldsymbol{f}^{(t)} \circ \boldsymbol{c}^{(t-1)}}_{\text {forget }}+\underbrace{\boldsymbol{i}^{(t)} \circ \boldsymbol{z}^{(t)}}_{\text {input }}
$$

Input Gate

- Determine what to keep: $\boldsymbol{i}^{(t)}=\sigma_{g}\left(\boldsymbol{W}_{1 i} \boldsymbol{x}^{(t)}+\boldsymbol{W}_{2 i} \boldsymbol{h}^{(t-1)}+\boldsymbol{b}_{i}\right)$

Input Gate

- Determine what to keep: $\boldsymbol{i}^{(t)}=\sigma_{g}\left(\boldsymbol{W}_{1 i} \boldsymbol{x}^{(t)}+\boldsymbol{W}_{2 i} \boldsymbol{h}^{(t-1)}+\boldsymbol{b}_{i}\right)$
- Compute tanh output: $\boldsymbol{z}^{(t)}=\tanh \left(\boldsymbol{W}_{1 z} \boldsymbol{x}^{(t)}+\boldsymbol{W}_{2 z} \boldsymbol{h}^{(t-1)}+\boldsymbol{b}_{z}\right)$
- $\boldsymbol{c}^{(t)}=\boldsymbol{f}^{(t)} \circ \boldsymbol{c}^{(t-1)}+\boldsymbol{i}^{(t)} \circ \boldsymbol{z}^{(t)}$

Output Gate

- Decide what to pass into next hidden state:

$$
\boldsymbol{o}^{(t)}=\sigma_{g}\left(\boldsymbol{W}_{1 o} \boldsymbol{x}^{(t)}+\boldsymbol{W}_{2 o} \boldsymbol{h}^{(t-1)}+\boldsymbol{b}_{o}\right)
$$

- $\boldsymbol{h}^{(t)}=\boldsymbol{o}^{(t)} \circ \tanh \left(\boldsymbol{c}^{(t)}\right)$

Gradient Vanishing

- Gradient:

$$
\frac{\partial \ell^{(T)}}{\partial \boldsymbol{W}}=\frac{\partial \ell^{(T)}}{\partial \boldsymbol{h}^{(T)}} \frac{\partial \boldsymbol{h}^{(T)}}{\partial \boldsymbol{c}^{(T)}}\left(\prod_{j=t+1}^{T} \frac{\partial \boldsymbol{c}^{(j)}}{\partial \boldsymbol{c}^{(j-1)}}\right) \frac{\partial \boldsymbol{c}^{(t)}}{\partial \boldsymbol{W}}
$$

Gradient Vanishing

- Gradient:

$$
\frac{\partial \ell^{(T)}}{\partial \boldsymbol{W}}=\frac{\partial \ell^{(T)}}{\partial \boldsymbol{h}^{(T)}} \frac{\partial \boldsymbol{h}^{(T)}}{\partial \boldsymbol{c}^{(T)}}\left(\prod_{j=t+1}^{T} \frac{\partial \boldsymbol{c}^{(j)}}{\partial \boldsymbol{c}^{(j-1)}}\right) \frac{\partial \boldsymbol{c}^{(t)}}{\partial \boldsymbol{W}}
$$

- $\boldsymbol{c}^{(j)}=\boldsymbol{f}^{(j)} \circ \boldsymbol{c}^{(j-1)}+\boldsymbol{i}^{(j)} \circ \boldsymbol{z}^{(j)}$

Gradient Vanishing

- Gradient:

$$
\frac{\partial \ell^{(T)}}{\partial \boldsymbol{W}}=\frac{\partial \ell^{(T)}}{\partial \boldsymbol{h}^{(T)}} \frac{\partial \boldsymbol{h}^{(T)}}{\partial \boldsymbol{c}^{(T)}}\left(\prod_{j=t+1}^{T} \frac{\partial \boldsymbol{c}^{(j)}}{\partial \boldsymbol{c}^{(j-1)}}\right) \frac{\partial \boldsymbol{c}^{(t)}}{\partial \boldsymbol{W}}
$$

- $\boldsymbol{c}^{(j)}=\boldsymbol{f}^{(j)} \circ \boldsymbol{c}^{(j-1)}+\boldsymbol{i}^{(j)} \circ \boldsymbol{z}^{(j)}$
- $\frac{\partial \boldsymbol{c}^{(j)}}{\partial \boldsymbol{c}^{(j-1)}}=\boldsymbol{c}^{(j-1)} \times \frac{\partial \boldsymbol{f}^{(j)}}{\partial \boldsymbol{c}^{(j-1)}}+\boldsymbol{f}^{(j)}+\boldsymbol{z}^{(j)} \times \frac{\partial \boldsymbol{i}^{(j)}}{\partial \boldsymbol{c}^{(j-1)}}+\boldsymbol{i}^{(j)} \times \frac{\partial \boldsymbol{z}^{(j)}}{\partial \boldsymbol{c}^{(j-1)}}$
- The summation prevents gradient vanishing.

Gated Recurrent Unit

GRU Cell

picture from https://towardsdatascience.com/illustrated-guide-to-Istms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Reset Gate and Update Gate

Reset gate $\boldsymbol{r}^{(t)}$ and Update gate $\boldsymbol{z}^{(t)}$ are calculated by:

$$
\begin{aligned}
& \boldsymbol{r}^{(t)}=\sigma_{g}\left(\boldsymbol{W}_{1 r} \boldsymbol{x}^{(t)}+\boldsymbol{W}_{2 r} \boldsymbol{h}^{(t-1)}+\boldsymbol{b}_{r}\right) \\
& \boldsymbol{z}^{(t)}=\sigma_{g}\left(\boldsymbol{W}_{1 z} \boldsymbol{x}^{(t)}+\boldsymbol{W}_{2 z} \boldsymbol{h}^{(t-1)}+\boldsymbol{b}_{z}\right)
\end{aligned}
$$

Candidate Hidden State

Candidate hidden state $\tilde{\boldsymbol{h}}^{(t)}$:

$$
\tilde{\boldsymbol{h}}^{t}=\tanh \left(\boldsymbol{W}_{1 h} \boldsymbol{x}^{(t)}+\boldsymbol{W}_{2 h}\left(\boldsymbol{r}^{(t)} \circ \boldsymbol{h}^{(t-1)}\right)+\boldsymbol{b}_{h}\right)
$$

- Determine what to be kept from previous hidden state: $\boldsymbol{r}^{(t)} \circ \boldsymbol{h}^{(t-1)}$

$\sigma \quad \begin{gathered}\text { FC layer with } \\ \text { activation function }\end{gathered}$Elementwise operator

Concatenate

Final Hidden State

Hidden state $\boldsymbol{h}^{(t)}$:

$$
\boldsymbol{h}^{(t)}=\boldsymbol{z}^{(t)} \circ \boldsymbol{h}^{(t-1)}+\left(1-\boldsymbol{z}^{(t)}\right) \circ \tilde{\boldsymbol{h}}^{(t)}
$$

- Keep info from previous hidden state: $\boldsymbol{z}^{(t)} \circ \boldsymbol{h}^{(t-1)}$
- Get info from current state: $\left(1-\boldsymbol{z}^{(t)}\right) \circ \tilde{\boldsymbol{h}}^{(t)}$

Conclusions

- Gradient Vanishing
- LSTM
- GRU

Questions?

