Yao Li
UNC Chapel Hill

Sep 15, 2022

Materials are from Deep Learning (UCLA)

DAt 1/26

Representation for sentence/document

@ A classical way to represent NLP data
@ Text — Vector/Matrices

@ Problem: text length not fixed

DA 3/26

@ A classical way to represent NLP data
@ Text — Vector/Matrices
@ Problem: text length not fixed
@ Bag of words:
Sentence — d-dimensional vector x

(international)

(conference)

(machine)
(train)

(learning)

(leading)

O | R, |INJO|NIN|N

(totoro)

d = number of potential words (very large)
[m] = = =

DA® 3/26

o Step 1: Collect Data

It was the best of times,

it was the worst of times,

it was the age of wisdom,

it was the age of foolishness,

DAt 4/26

o Step 1: Collect Data

It was the best of times,

it was the worst of times,

it was the age of wisdom,

it was the age of foolishness,

@ Step 2: Build the Vocabulary

{it, was, the, best, of, times, worst, age, wisdom, foolishness}

DAt 4/26

Bag of Words: Processing Steps

@ Step 1: Collect Data
It was the best of times,
it was the worst of times,
it was the age of wisdom,
it was the age of foolishness,
o Step 2: Build the Vocabulary
{it, was, the, best, of, times, worst, age, wisdom, foolishness}
@ Step 3: Create Document/Sentence Vectors

‘it was the best of times worst age wisdom foolishness

d|l 1 1 1 1 1 0 0 0 0
|1l 1 1 0 1 1 1 0 0 0
|l 1 1 0 1 0 0 1 1 0
dy |1 1 1 0 1 0 0 1 0 1

e Bag of n-gram features (n = 2):

(international) 2 (international conference) 1
(conference) 2 (machine learning) 2
(machine) 2 (leading international) 1
(train) 0 (totoro tiger) 0
(learning) 2 (tiger woods) 0
(leading) 1 (international academic) 1
(totoro) 0 (academic conference) 1

DA 5/26

TF-IDF

@ Use the bag-of-word matrix or the normalized version (TF-IDF) for a
dataset (denoted by D):

tfidf(doc, word, D) = tf(doc, word) - idf (word, D)
o tf (doc, word): term frequency
(word count in the document)/(total number of terms in the document)

o idf (word, Dataset): inverse document frequency
log((Number of documents)/(Number of documents with this word))

Data Matrix (document)

tfidf(doc, word, D) = tf(doc, word) - idf (word, D)
TF = (word count in the doc)/(total number of terms in the doc)
IDF = log((Number of docs)/(Number of docs with this word))

angeles los new post times york

dl1 0 0 1 0 1 1
d2 0 0 1 1 0 1
d3 1 1 0 0 1 0
tf-idf
angeles | los new post times york
d1 |o 0 Lxlog(Z) =035 |0 0135 0.135
d2 o 0 0.135 xlog(3) =0366 O 0.135
d3 | 0.366 0.366 0 0 0.135 0

Bag of word + linear model

e Example: text classification (e.g., sentiment prediction, review score
prediction)

e Linear model: y ~ sign(w x)
(e.g., by linear SVM/logistic regression)

@ w;: the “contribution” of each word

(] f(X) = WLO'(W[__l < -O'(W()X))

DA 9/26

Bag of word + Fully connected network

(] f(x) = WLO'(WL_l . ~~U(WOX))

W, € R%1x4 x €R? Bag of words

it

was

the

best

of

v

times
Wa

Word embedding of “best” worst

age

wisdom

clololo R R kR R R K
o|lo|o|o|r|r|kr|kr|kr|k

foolishness

o W is also called the word embedding matrix
@ w;: d; dimensional representation of i-th word
o Wox = xywy +xows + -+ - + Xgwy

is a linear combination of these vectors

It was the best of
times

Recurrent Neural Network

Time Series/Sequence Data

° InPUt: {x17X27 e 7XT}
e Each x; is the feature at time step t
e Each x; can be a d-dimensional vector

o Output: {y1,y2, - ,y7}
o Each y; is the output at step ¢
e Multi-class output or Regression output:

yve€{1,2,---,L} or €R

o Translation: y, € R?

Example: Time Series Prediction

@ Climate Data:

e X;: temperature at time t
e y;: temperature (or temperature change) at time ¢t + 1

@ Stock Price: Predicting stock price

40-

20-

T (degC)

20-

4e+05

2e+05 3e+05

0e+00 16405
1:nrow(data)

The

cat

DA 1326

Example: Language Modeling

The cat is ?

@ x;: one-hot encoding to represent the word at step t
([o,...,0,1,0,...,0])
@ y:: the next word

yt € {1,---,V} V: Vocabulary size

[
(I M|

The cat is ?
Y1 Y2 Y3

@ Part of Speech Tagging:

Labeling words with their Part-Of-Speech (Noun, Verb, Adjective,

@ Xx;: a vector to represent the word at step t
@ y:: label of word t

SEOROIOD
she B

on

picture from https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa3l

DA™ 14/26

 https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31

Recurrent Neural Network (RNN)

[

O Ul~l 0[0[+1
T PR I
Ty =) 0L 0O
w w w
Unfold
U U U U
X X X X

t=1 t t+1
@ x;: t-th input
@ s;: hidden state at time t (“memory” of the network)
st = f(Uxt + Wsi_q)

W: transition matrix, U : word embedding matrix
sp usually set to be 0, f: activation function
@ Predicted output at time t:

or = arg max(Vst);

@ Training: Find U, W,V to minimize empirical loss
@ Loss of a sequence:

T

Z loss(V's¢, yt)
t=1

(st is a function of U, W, V)

DA 16/26

Recurrent Neural Network (RNN)

@ Training: Find U, W,V to minimize empirical loss:

@ Loss of a sequence:
-
Z loss(Vst, yt)
t=1

(st is a function of U, W, V)
@ Loss on a batch:
Average loss over all sequences in a batch
@ Solved by SGD/Adam

RNN: Text Classification

@ Not necessary to output at each step

@ Text Classification:
sentence — category

Output only at the final step

©]

@ Model: add a fully connected network to the final embedding
> @
Output probability

So 51 S2 53
for binary classification
E| E E| E| Sentence embedding

ot omouh o xd

The cat is eating

Y

Multi-layer RNN

targetl target2 <END>

(

)

() () ((

53D SEEE

=500 | FE 0B
() () ()

tokenl token2 <END> tokenl token2 <END>

(Figure from https://subscription.packtpub.com/book/big_data_and_business_intelligence)

https://subscription.packtpub.com/book/big_data_and_business_intelligence

@ Hard to capture long-term dependencies

@ Hard to solve (vanishing gradient problem)
@ Solution:

e LSTM (Long Short Term Memory networks)
o GRU (Gated Recurrent Unit)
. CEEE

DA 19/26

@ RNN:

e LSTM:

v

Neural Network Pointwise Vector

C
Layer Operation Transfer Concatenate opy

[} o —

DA 20/26

Neural Machine Translation (NMT)

@ Out the translated sentence from an input sentence
e Training data: a set of input-output pairs (supervised setting)

@ Encoder-decoder approach:
o Encoder: Use (RNN/LSTM) to encode the input sentence input a latent

vector
o Decoder: Use (RNN/LSTM) to generate a sentence based on the latent

vector

Awesome sauce

X r X,

[oohoo] [od'okoo]

@ Start input of the decoder?
@ When to stop?

These are the predicted words/outputs at each timestep
f 1
Outputs -> ravi de vous rencontrer <END>

r t 1t 1 1

Final internal

states of
encoder h These
t final
internal
states of
decoder
are
discarded
I | I I
Inputs > <START> ravi de vous rencontrer
>
timesteps

picture from https://medium.com/analytics-vidhya/encoder-decoder-seq2seq-models-clearly-explained-c34186fbf49b

[m] = = =

DA 22/26

@ Only the last hidden state is used in decoding.
@ Do not work well on long sequences.
@ Solution:

o Attention Mechanism:

How about if we give a vector representation from every encoder step to
the decoder model?

DA 23/26

Attention in NMT

@ Usually, each output word is only related to a subset of input words
(e.g., for machine translation)

@ Let u be the current decoder hidden state
vi,...,V, be the hidden sate for each input word

@ Compute the weight of each state by

p= Softmax(uTvl, e uTv,,)

@ Compute the context vector by Vp = pivi + -+ + pavp

\5

decoder
hidden state

I Attention layer
addition

000 -
t

multiplication

multiplication

000 1 000 :I_ 00 ~—|m 00 1

1 ' 1 1
score

® e —o [—o
I l I

|

encoder
hidden state

Encoder

!

.?. .?. .?.

(Figure from https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism)

=] 5 = = = DAC 25/26

https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism

e Bag of words
@ RNN

@ Attention in NMT

Questions?

DA 26/26

