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STOR566: Introduction to Deep Learning
Lecture 9: Recurrent Neural Networks

Yao Li
UNC Chapel Hill

Sep 15, 2022

Materials are from Deep Learning (UCLA)
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Representation for sentence/document
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Bag of Words

A classical way to represent NLP data

Text → Vector/Matrices

Problem: text length not fixed

Bag of words:

Sentence → d-dimensional vector x

d = number of potential words (very large)
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Bag of Words: Processing Steps

Step 1: Collect Data

Step 2: Build the Vocabulary

{it, was, the, best, of, times, worst, age, wisdom, foolishness}
Step 3: Create Document/Sentence Vectors

it was the best of times worst age wisdom foolishness

d1 1 1 1 1 1 1 0 0 0 0
d2 1 1 1 0 1 1 1 0 0 0
d3 1 1 1 0 1 0 0 1 1 0
d4 1 1 1 0 1 0 0 1 0 1
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Bag of n-gram

Bag of n-gram features (n = 2):
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TF-IDF

Use the bag-of-word matrix or the normalized version (TF-IDF) for a
dataset (denoted by D):

tfidf(doc,word,D) = tf (doc,word) · idf (word,D)
tf (doc, word): term frequency

(word count in the document)/(total number of terms in the document)

idf (word, Dataset): inverse document frequency
log((Number of documents)/(Number of documents with this word))
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Data Matrix (document)

tfidf(doc,word,D) = tf (doc,word) · idf (word,D)
TF = (word count in the doc)/(total number of terms in the doc)

IDF = log((Number of docs)/(Number of docs with this word))
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Bag of word + linear model

Example: text classification (e.g., sentiment prediction, review score
prediction)

Linear model: y ≈ sign(wTx)
(e.g., by linear SVM/logistic regression)

wi : the “contribution” of each word
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Bag of word + Fully connected network

f (x) = WLσ(WL−1 · · ·σ(W0x))

W0 is also called the word embedding matrix

wi : d1 dimensional representation of i-th word

W0x = x1w1 + x2w2 + · · ·+ xdwd

is a linear combination of these vectors
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Recurrent Neural Network
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Time Series/Sequence Data

Input: {x1, x2, · · · , xT}
Each xt is the feature at time step t
Each xt can be a d-dimensional vector

Output: {y1, y2, · · · , yT}
Each yt is the output at step t
Multi-class output or Regression output:

yt ∈ {1, 2, · · · , L} or yt ∈ R

Translation: yt ∈ Rd
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Example: Time Series Prediction

Climate Data:

xt : temperature at time t
yt : temperature (or temperature change) at time t + 1

Stock Price: Predicting stock price
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Example: Language Modeling

xt : one-hot encoding to represent the word at step t

([0, . . . , 0, 1, 0, . . . , 0])

yt : the next word

yt ∈ {1, · · · ,V } V: Vocabulary size
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Example: POS Tagging

Part of Speech Tagging:

Labeling words with their Part-Of-Speech (Noun, Verb, Adjective,
· · · )
xt : a vector to represent the word at step t

yt : label of word t

picture from https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31

 https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31 
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Recurrent Neural Network (RNN)

xt : t-th input
st : hidden state at time t (“memory” of the network)

st = f (Uxt +W st−1)

W : transition matrix, U : word embedding matrix
s0 usually set to be 0, f : activation function
Predicted output at time t:

ot = argmax
i
(V st)i
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Recurrent Neural Network (RNN)

Training: Find U,W ,V to minimize empirical loss:

Loss of a sequence:
T∑
t=1

loss(V st , yt)

(st is a function of U,W ,V )

Loss on a batch:

Average loss over all sequences in a batch

Solved by SGD/Adam
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RNN: Text Classification

Not necessary to output at each step

Text Classification:
sentence → category

Output only at the final step

Model: add a fully connected network to the final embedding
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Multi-layer RNN

(Figure from https://subscription.packtpub.com/book/big_data_and_business_intelligence)

https://subscription.packtpub.com/book/big_data_and_business_intelligence
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Problems of Classical RNN

Hard to capture long-term dependencies

Hard to solve (vanishing gradient problem)

Solution:

LSTM (Long Short Term Memory networks)
GRU (Gated Recurrent Unit)
· · ·
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LSTM

RNN:

LSTM:
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Neural Machine Translation (NMT)

Out the translated sentence from an input sentence
Training data: a set of input-output pairs (supervised setting)
Encoder-decoder approach:

Encoder: Use (RNN/LSTM) to encode the input sentence input a latent
vector
Decoder: Use (RNN/LSTM) to generate a sentence based on the latent
vector
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RNN: Neural Machine Translation

Start input of the decoder?

When to stop?

picture from https://medium.com/analytics-vidhya/encoder-decoder-seq2seq-models-clearly-explained-c34186fbf49b
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Problems

Only the last hidden state is used in decoding.

Do not work well on long sequences.

Solution:

Attention Mechanism:

How about if we give a vector representation from every encoder step to
the decoder model?
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Attention in NMT

Usually, each output word is only related to a subset of input words

(e.g., for machine translation)

Let u be the current decoder hidden state
v1, . . . , vn be the hidden sate for each input word

Compute the weight of each state by

p = Softmax(uTv1, . . . ,uTvn)

Compute the context vector by Vp = p1v1 + · · ·+ pnvn
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Attention in NMT

(Figure from https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism)

https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism
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Conclusions

Bag of words

RNN

Attention in NMT

Questions?


