STOR566: Introduction to Deep Learning Lecture 9: Recurrent Neural Networks

Yao Li UNC Chapel Hill

Sep 15, 2022

Materials are from Deep Learning (UCLA)

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 1/26

Representation for sentence/document

<□ > < @ > < ≧ > < ≧ > ≧ の Q @ 2/26

Bag of Words

• A classical way to represent NLP data

<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 3/26

- $\bullet \ \mbox{Text} \to \mbox{Vector}/\mbox{Matrices}$
- Problem: text length not fixed

Bag of Words

- A classical way to represent NLP data
- Text → Vector/Matrices
- Problem: text length not fixed
- Bag of words:

Sentence $\rightarrow d$ -dimensional vector **x**

The International Conference	>	(international)	2
on Machine Learning is the		(conference)	2
leading international	\rightarrow	(machine)	2
academic conference in		(train)	0
machine learning,		(learning)	2
		(leading)	1
		(totoro)	0

d = number of potential words (very large) <ロト < 回 ト < 三 ト < 三 ト ミ の Q @ 3/26

Bag of Words: Processing Steps

• Step 1: Collect Data

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness,

Bag of Words: Processing Steps

• Step 1: Collect Data

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness,

• Step 2: Build the Vocabulary

{it, was, the, best, of, times, worst, age, wisdom, foolishness}

Bag of Words: Processing Steps

• Step 1: Collect Data

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness,

Step 2: Build the Vocabulary

{it, was, the, best, of, times, worst, age, wisdom, foolishness}

• Step 3: Create Document/Sentence Vectors

	it	was	the	best	of	times	worst	age	wisdom	foolishness
d_1	1	1	1	1	1	1	0	0	0	0
d_2	1	1	1	0	1	1	1	0	0	0
d3	1	1	1	0	1	0	0	1	1	0
d_4	1	1	1	0	1	0	0	1	0	1

<ロ > < 母 > < 臣 > < 臣 > < 臣 > ○ < ↔ 4/26

Bag of *n*-gram

• Bag of *n*-gram features (*n* = 2):

The International Conference on Machine Learning is the leading international academic conference in machine learning,

(international)	2
(conference)	2
(machine)	2
(train)	0
(learning)	2
(leading)	1
(totoro)	0

(international conference)			
(machine learning)			
(leading international)			
(totoro tiger)			
(tiger woods)			
(international academic)			
(academic conference)			

TF-IDF

• Use the bag-of-word matrix or the normalized version (TF-IDF) for a dataset (denoted by *D*):

 $tfidf(doc, word, D) = tf(doc, word) \cdot idf(word, D)$

• tf (doc, word): term frequency

(word count in the document)/(total number of terms in the document)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 idf (word, Dataset): inverse document frequency log((Number of documents)/(Number of documents with this word))

Data Matrix (document)

 $tfidf(doc, word, D) = tf(doc, word) \cdot idf(word, D)$

TF = (word count in the doc)/(total number of terms in the doc)IDF = log((Number of docs)/(Number of docs with this word))

	angeles	los	new	post	times	york
d1	0	0	1	0	1	1
d2	0	0	1	1	0	1
d3	1	1	0	0	1	0

tf-idf

	angeles	los	new	post	times	york
d1	0	0	$\frac{1}{3} \times \log\left(\frac{3}{2}\right) = 0.135$	0	0.135	0.135
d2	0	0	0.135	$\frac{1}{3} \times \log(3) = 0.366$	0	0.135
d3	0.366	0.366	0	0	0.135	0

Bag of word + linear model

• Example: text classification (e.g., sentiment prediction, review score prediction)

• Linear model: $y \approx \operatorname{sign}(\boldsymbol{w}^T \boldsymbol{x})$

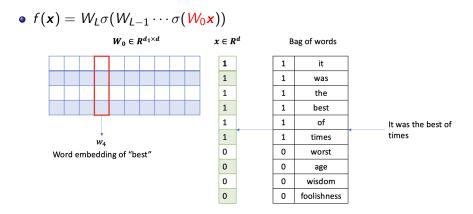
(e.g., by linear SVM/logistic regression)

• w_i: the "contribution" of each word

Bag of word + Fully connected network

•
$$f(\mathbf{x}) = W_L \sigma(W_{L-1} \cdots \sigma(W_0 \mathbf{x}))$$

Bag of word + Fully connected network



- W₀ is also called the word embedding matrix
- w_i : d_1 dimensional representation of *i*-th word

•
$$W_0 \mathbf{x} = x_1 \mathbf{w}_1 + x_2 \mathbf{w}_2 + \cdots + x_d \mathbf{w}_d$$

is a linear combination of these vectors

Recurrent Neural Network

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 10/26

Time Series/Sequence Data

• Input: $\{x_1, x_2, \cdots, x_T\}$

- Each x_t is the feature at time step t
- Each x_t can be a d-dimensional vector

• Output: $\{y_1, y_2, \cdots, y_T\}$

- Each y_t is the output at step t
- Multi-class output or Regression output:

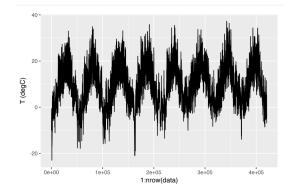
$$y_t \in \{1, 2, \cdots, L\}$$
 or $y_t \in \mathbb{R}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 11/26

• Translation: $\mathbf{y}_t \in \mathbb{R}^d$

Example: Time Series Prediction

- Climate Data:
 - **x**_t: temperature at time t
 - y_t : temperature (or temperature change) at time t + 1
- Stock Price: Predicting stock price



▲□▶ ▲舂▶ ▲≧▶ ▲≧▶ 三喜 - 釣�� 12/26

Example: Language Modeling

The cat is ?

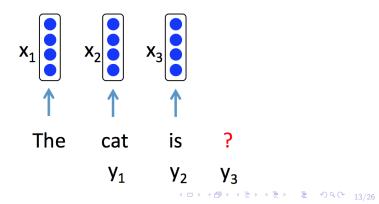
< □ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ = うへで 13/26

Example: Language Modeling

The cat is ?

- x_t : one-hot encoding to represent the word at step t ([0,...,0,1,0,...,0])
- y_t : the next word

$$y_t \in \{1, \cdots, V\}$$
 V: Vocabulary size



Example: POS Tagging

• Part of Speech Tagging:

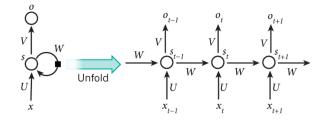
Labeling words with their Part-Of-Speech (Noun, Verb, Adjective, \cdots)

- **x**_t: a vector to represent the word at step t
- y_t : label of word t



picture from https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31

Recurrent Neural Network (RNN)



- x_t : *t*-th input
- **s**_t: hidden state at time t ("memory" of the network)

$$\boldsymbol{s}_t = f(U\boldsymbol{x}_t + W\boldsymbol{s}_{t-1})$$

W: transition matrix, U: word embedding matrix s_0 usually set to be 0, f: activation function

• Predicted output at time t:

$$o_t = \arg\max_i (Vs_t)_i$$

Recurrent Neural Network (RNN)

- Training: Find U, W, V to minimize empirical loss:
- Loss of a sequence:

$$\sum_{t=1}^{T} \mathsf{loss}(V \boldsymbol{s}_t, y_t)$$

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ の Q ○ 16/26

 $(\mathbf{s}_t \text{ is a function of } U, W, V)$

Recurrent Neural Network (RNN)

- Training: Find U, W, V to minimize empirical loss:
- Loss of a sequence:

$$\sum_{t=1}^{T} \mathsf{loss}(V \boldsymbol{s}_t, y_t)$$

 $(\mathbf{s}_t \text{ is a function of } U, W, V)$

Loss on a batch:

Average loss over all sequences in a batch

Solved by SGD/Adam

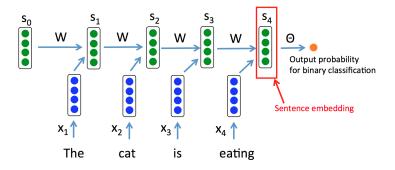
RNN: Text Classification

- Not necessary to output at each step
- Text Classification:

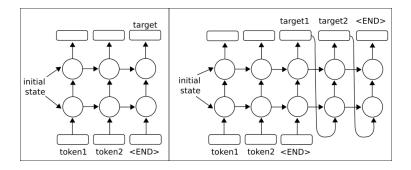
```
sentence \rightarrow category
```

Output only at the final step

• Model: add a fully connected network to the final embedding



Multi-layer RNN



< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 18/26

(Figure from https://subscription.packtpub.com/book/big_data_and_business_intelligence)

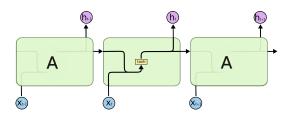
Problems of Classical RNN

- Hard to capture long-term dependencies
- Hard to solve (vanishing gradient problem)
- Solution:
 - LSTM (Long Short Term Memory networks)

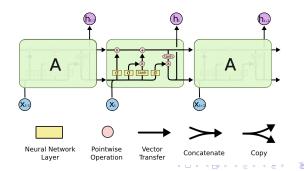
- GRU (Gated Recurrent Unit)
- • •

LSTM

• RNN:



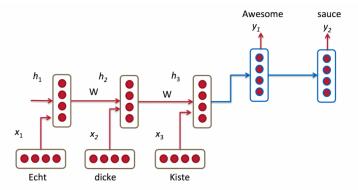
• LSTM:



≣ ∽ ९ 약 20/26

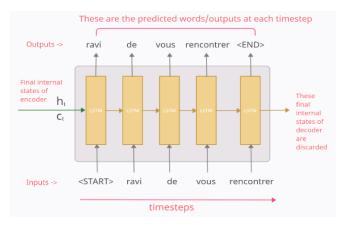
Neural Machine Translation (NMT)

- Out the translated sentence from an input sentence
- Training data: a set of input-output pairs (supervised setting)
- Encoder-decoder approach:
 - Encoder: Use (RNN/LSTM) to encode the input sentence input a latent vector
 - Decoder: Use (RNN/LSTM) to generate a sentence based on the latent vector



RNN: Neural Machine Translation

- Start input of the decoder?
- When to stop?



 $picture\ from\ https://medium.com/analytics-vidhya/encoder-decoder-seq2seq-models-clearly-explained-c34186fbf49b$

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 – のへで

Problems

- Only the last hidden state is used in decoding.
- Do not work well on long sequences.
- Solution:
 - Attention Mechanism:

How about if we give a vector representation from every encoder step to the decoder model?

<□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

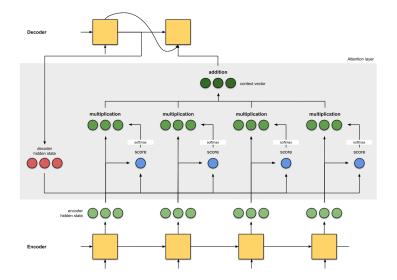
Attention in NMT

- Usually, each output word is only related to a subset of input words (e.g., for machine translation)
- Let *u* be the current decoder hidden state
 *v*₁,..., *v*_n be the hidden sate for each input word
- Compute the weight of each state by

$$\boldsymbol{p} = \mathsf{Softmax}(\boldsymbol{u}^T \boldsymbol{v}_1, \dots, \boldsymbol{u}^T \boldsymbol{v}_n)$$

• Compute the context vector by $V \boldsymbol{p} = p_1 \boldsymbol{v}_1 + \dots + p_n \boldsymbol{v}_n$

Attention in NMT



(Figure from https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism)

Conclusions

- Bag of words
- RNN
- Attention in NMT

Questions?

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @ 26/26