# STOR566: Introduction to Deep Learning 

Lecture 9: Recurrent Neural Networks

Yao Li<br>UNC Chapel Hill

Sep 15, 2022

## Representation for sentence/document

## Bag of Words

- A classical way to represent NLP data
- Text $\rightarrow$ Vector/Matrices
- Problem: text length not fixed


## Bag of Words

- A classical way to represent NLP data
- Text $\rightarrow$ Vector/Matrices
- Problem: text length not fixed
- Bag of words:

Sentence $\rightarrow d$-dimensional vector $\boldsymbol{x}$

$d=$ number of potential words (very large)

## Bag of Words: Processing Steps

- Step 1: Collect Data

It was the best of times,
it was the worst of times,
it was the age of wisdom,
it was the age of foolishness,

## Bag of Words: Processing Steps

- Step 1: Collect Data

> It was the best of times,
> it was the worst of times,
> it was the age of wisdom,
> it was the age of foolishness,

- Step 2: Build the Vocabulary
\{it, was, the, best, of, times, worst, age, wisdom, foolishness\}


## Bag of Words: Processing Steps

- Step 1: Collect Data

It was the best of times,
it was the worst of times,
it was the age of wisdom,
it was the age of foolishness,

- Step 2: Build the Vocabulary
\{it, was, the, best, of, times, worst, age, wisdom, foolishness\}
- Step 3: Create Document/Sentence Vectors

|  | it | was | the | best | of | times | worst | age | wisdom | foolishness |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $d_{1}$ | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| $d_{2}$ | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| $d_{3}$ | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
| $d_{4}$ | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |

## Bag of $n$-gram

- Bag of $n$-gram features $(n=2)$ :

The International Conference on Machine Learning is the leading international academic conference in machine learning,

| (international) | 2 |
| :---: | :---: |
| (conference) | 2 |
| (machine) | 2 |
| (train) | 0 |
| (learning) | 2 |
| (leading) | 1 |
| (totoro) | 0 |


| (international conference) | 1 |
| :---: | :---: |
| (machine learning) | 2 |
| (leading international) | 1 |
| (totoro tiger) | 0 |
| (tiger woods) | 0 |
| (international academic) | 1 |
| (academic conference) | 1 |

## TF-IDF

- Use the bag-of-word matrix or the normalized version (TF-IDF) for a dataset (denoted by $D$ ):

$$
\operatorname{tfidf}(\text { doc, word, } \mathrm{D})=t f(\text { doc }, \text { word }) \cdot i d f(\text { word, } \mathrm{D})
$$

- tf (doc, word): term frequency
(word count in the document)/(total number of terms in the document)
- idf (word, Dataset): inverse document frequency
$\log (($ Number of documents) $/($ Number of documents with this word $)$ )


## Data Matrix (document)

tfidf(doc, word, D$)=t f($ doc, word $) \cdot i d f($ word, D$)$
$\mathrm{TF}=$ (word count in the doc) $/($ total number of terms in the doc)
IDF $=\log (($ Number of docs $) /($ Number of docs with this word $))$

|  | angeles | los | new | post | times | york |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| d1 | 0 | 0 | 1 | 0 | 1 | 1 |
| d2 | 0 | 0 | 1 | 1 | 0 | 1 |
| d3 | 1 | 1 | 0 | 0 | 1 | 0 |
|  |  |  |  |  |  |  |

tf-idf

|  | angeles | los | new | post | times | york |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| d1 | 0 | 0 | $\frac{1}{3} \times \log \left(\frac{3}{2}\right)=0.135$ | 0 | 0.135 | 0.135 |
| d2 | 0 | 0 | 0.135 | $\frac{1}{3} \times \log (3)=0.366$ | 0 | 0.135 |
| d3 | 0.366 | 0.366 | 0 | 0 | 0.135 | 0 |

## Bag of word + linear model

- Example: text classification (e.g., sentiment prediction, review score prediction)
- Linear model: $y \approx \operatorname{sign}\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)$
(e.g., by linear SVM/logistic regression)
- $w_{i}$ : the "contribution" of each word


## Bag of word + Fully connected network

- $f(\boldsymbol{x})=W_{L} \sigma\left(W_{L-1} \cdots \sigma\left(W_{0} x\right)\right)$


## Bag of word + Fully connected network

- $f(\boldsymbol{x})=W_{L} \sigma\left(W_{L-1} \cdots \sigma\left(W_{0} x\right)\right)$

- $W_{0}$ is also called the word embedding matrix
- $\boldsymbol{w}_{i}: d_{1}$ dimensional representation of $i$-th word
- $W_{0} \boldsymbol{x}=x_{1} \boldsymbol{w}_{1}+x_{2} \boldsymbol{w}_{2}+\cdots+x_{d} \boldsymbol{w}_{d}$
is a linear combination of these vectors

Recurrent Neural Network

## Time Series/Sequence Data

- Input: $\left\{\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{T}\right\}$
- Each $\boldsymbol{x}_{t}$ is the feature at time step $t$
- Each $\boldsymbol{x}_{t}$ can be a $d$-dimensional vector
- Output: $\left\{y_{1}, y_{2}, \cdots, y_{T}\right\}$
- Each $y_{t}$ is the output at step $t$
- Multi-class output or Regression output:

$$
y_{t} \in\{1,2, \cdots, L\} \text { or } y_{t} \in \mathbb{R}
$$

- Translation: $\mathbf{y}_{t} \in \mathbb{R}^{d}$


## Example: Time Series Prediction

- Climate Data:
- $\boldsymbol{x}_{t}$ : temperature at time $t$
- $y_{t}$ : temperature (or temperature change) at time $t+1$
- Stock Price: Predicting stock price



## Example: Language Modeling

## The cat is ?

## Example: Language Modeling

## The cat is ?

- $x_{t}$ : one-hot encoding to represent the word at step $t$ ( $[0, \ldots, 0,1,0, \ldots, 0]$ )
- $y_{t}$ : the next word



## Example: POS Tagging

- Part of Speech Tagging:

Labeling words with their Part-Of-Speech (Noun, Verb, Adjective, $\cdots$ )

- $\boldsymbol{x}_{t}$ : a vector to represent the word at step $t$
- $y_{t}$ : label of word $t$



## Recurrent Neural Network (RNN)



- $x_{t}$ : $t$-th input
- $\boldsymbol{s}_{t}$ : hidden state at time $t$ ("memory" of the network)

$$
\boldsymbol{s}_{t}=f\left(U \boldsymbol{x}_{t}+W \boldsymbol{s}_{t-1}\right)
$$

$W$ : transition matrix, $U$ : word embedding matrix
$s_{0}$ usually set to be $0, f$ : activation function

- Predicted output at time $t$ :

$$
o_{t}=\arg \max _{i}\left(V s_{t}\right)_{i}
$$

## Recurrent Neural Network (RNN)

- Training: Find $U, W, V$ to minimize empirical loss:
- Loss of a sequence:

$$
\sum_{t=1}^{T} \operatorname{loss}\left(V s_{t}, y_{t}\right)
$$

( $s_{t}$ is a function of $U, W, V$ )

## Recurrent Neural Network (RNN)

- Training: Find $U, W, V$ to minimize empirical loss:
- Loss of a sequence:

$$
\sum_{t=1}^{T} \operatorname{loss}\left(V s_{t}, y_{t}\right)
$$

( $s_{t}$ is a function of $U, W, V$ )

- Loss on a batch:

Average loss over all sequences in a batch

- Solved by SGD/Adam


## RNN: Text Classification

- Not necessary to output at each step
- Text Classification:

$$
\text { sentence } \rightarrow \text { category }
$$

Output only at the final step

- Model: add a fully connected network to the final embedding



## Multi-layer RNN


(Figure from https://subscription.packtpub.com/book/big_data_and_business_intelligence)

## Problems of Classical RNN

- Hard to capture long-term dependencies
- Hard to solve (vanishing gradient problem)
- Solution:
- LSTM (Long Short Term Memory networks)
- GRU (Gated Recurrent Unit)
- . .


## LSTM

- RNN:

- LSTM:



## Neural Machine Translation (NMT)

- Out the translated sentence from an input sentence
- Training data: a set of input-output pairs (supervised setting)
- Encoder-decoder approach:
- Encoder: Use (RNN/LSTM) to encode the input sentence input a latent vector
- Decoder: Use (RNN/LSTM) to generate a sentence based on the latent vector



## RNN: Neural Machine Translation

- Start input of the decoder?
- When to stop?

These are the predicted words/outputs at each timestep

picture from https://medium.com/analytics-vidhya/encoder-decoder-seq2seq-models-clearly-explained-c34186fbf49b

## Problems

- Only the last hidden state is used in decoding.
- Do not work well on long sequences.
- Solution:
- Attention Mechanism:

How about if we give a vector representation from every encoder step to the decoder model?

## Attention in NMT

- Usually, each output word is only related to a subset of input words (e.g., for machine translation)
- Let $\boldsymbol{u}$ be the current decoder hidden state $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}$ be the hidden sate for each input word
- Compute the weight of each state by

$$
\boldsymbol{p}=\operatorname{Softmax}\left(\boldsymbol{u}^{T} \boldsymbol{v}_{1}, \ldots, \boldsymbol{u}^{T} \boldsymbol{v}_{n}\right)
$$

- Compute the context vector by $V \boldsymbol{p}=p_{1} \boldsymbol{v}_{1}+\cdots+p_{n} \boldsymbol{v}_{n}$


## Attention in NMT


(Figure from https://towardsdatascience.com/neural-machine-translation-nmt-with-attention-mechanism)

## Conclusions

- Bag of words
- RNN
- Attention in NMT


## Questions?

