Yao Li
UNC Chapel Hill

Sep 13, 2022

Materials are from Learning from data (Caltech) and Deep Learning (UCLA)

DA™

1/32

Convolutional Neural Network

@ Structure of VGG

224x224x3

l

input

@ Two important layers:

o Convolution
e Pooling

A 3/32

Convolution Layer

@ Fully connected layers have too many parameters

= poor performance
@ Example: VGG first layer
o Input: 224 x 224 x 3
o Output: 224 x 224 x 64
o Number of parameters if we use fully connected net:
(224 x 224 x 3) x (224 x 224 x 64) = 483 billion
o Convolution layer leads to:

e Local connectivity
e Parameter sharing

Local connectivity

\

N

Ny n it _ \ ,.,’t,ﬁZ///,./
R AR V’/ /.//J//l

J»"(N\
S\ S

-
T e ——

(Figure from Salakhutdinov 2017)

Parameter Sharing

@ Making a reasonable assumption:

If one feature is useful to compute at some spatial position (x, y), then it
should also be useful to compute at a different position (x2, y»)

@ Using the convolution operator

@ The convolution of an image x with a kernel k is computed as

(x*k)j =D Xitpjtq

kp.q
pq
1 |05 | 20
1|05
025 0 | o | 3K
025| 0
0| o |20

DA 7/32

1*1+0.5%0.2 + 0.25%0.2 + 0*0 = 1.15

20

1.15

«O)» «F)» « =»

<

DA 8/32

0.5*1 +20*0.2 + 0%*0.2 + 0¥0 = 4.5

«O)» «F)»r «

1.15

4.5

DA 9/32

0.25*1 + 0*%0.2 + 0%0.2 + 0*0 = 0.25

0.5

20

115 | 45

0.25

«O)>» «F)r « =>»

« =

DA 10/32

0*1 + 0%0.2 + 0%0.2 + 20*0=0
1 | 05| 20
: > 1.15 | 45
025110 . * :
1 0.2 0.2 0 0.25| 0
0 0 =
0.2 0

DA 1173

Multiple Channels

o Multiple input channels:

Input Kernel Input Kernel Qutput
112]3
112
4156 *
T 3|4
1]2 718]°9 56 | 72
* |91 = + =
ll I AE of1]2 104{120
718 0|1
3|45 *
213
6|78

Image from Dive into Deep Learning

0 (1x142x244x3+5x4)+(0x0+1x1+3x2+4x%x3)=056

o Multiple input channels and output channels

Filter 1
Input

3x3x3

Output
3x3x3

4x4
Filter 2

6x6x3

4x4x2

htps:/ findoml.com

@ Number of parameters: ki X ko X djp X doyt + dout

DA 13/32

Learned Kernels

@ Example kernels learned by AlexNet

Strides

@ Stride: The amount of movement between applications of the kernel to
the input image
e Strude = (1,1): no stride

stride = (2,2)

Padding

@ Use zero padding to allow going over the boundary
e Easier to control the size of output layer

Output Feature Map Shape

@ The shape of a output feature map depends on: shape of the input
feature map, kernel size, stride, padding, etc.

Shape:

e input: (N, Cipy Hin, Wip,) or (Ciny Hipy Wi)
e Output: (N, Couty Hout, Waut) or (C,mt, H,y, Wout); where

le + 2 x padding[0] — dilation[0] x (kernel_size[0] — 1) — 1 J
Hout = +1

stride[0]

Wi — V’Vm + 2 x padding[1] — dilation[1] x (kernel_size[1] —1) — 1 N IJ

stride[1]

(The formula is taken from pytorch conv2d document)

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

Pooling

@ It's common to insert a pooling layer in-between successive
convolutional layers

@ Reduce the size of representation, down-sampling

@ Example: Max Pooling

224x224x64

!

=

224

downsampling

112x112x64

!112
112

Single depth slice

NN 2 | 4
max pool with 2x2 filters
5|16 |78 and stride 2
3 | 2 EiNEe
11234

Example: LeNetb

C1: feature maps
INPUT
) 6@26x28

S2:f. maps
6@14x14

|
| ‘] Full conflection I Gaussian connections
C i [L Full

Input: 32 x 32 images (MNIST)
@ Convolution 1: 6 5 x 5 filters, stride 1
e Output: 6 28 x 28 maps
Pooling 1: 2 x 2 max pooling, stride 2
o Output: 6 14 x 14 maps
@ Convolution 2: 16 5 x 5 filters, stride 1
e Output: 16 10 x 10 maps
Pooling 2: 2 x 2 max pooling with stride 2
o Output: 16 5 x 5 maps (total 400 values)

3 fully connected layers: 120 = 84 = 10 neurons

@ 8 layers in total, about 60 million
parameters and 650,000 neurons.

@ Trained on ImageNet dataset
“ImageNet Classification with Deep
Convolutional Neural Networks”, by

Krizhevsky, Sustskever and Hinton,
NIPS 2012.

Layer 7: Full

LT
Layer 6: Full
ERS
Layer 5: Conv + Pool

EgyS

Layer 4: Conv
ES

Layer 3: Conv

[
[
{
[
{

DA 20/32

224x224x3

Q>

21/32

What do the kernels learn?

@ The receptive field of a neuron is the input region that can affect the
neuron’s output

@ The receptive field for a first layer neuron is its neighbors (depending
on kernel size) = capturing very local patterns

@ For higher layer neurons, the receptive field can be much larger =
capturing global patterns

Data Augmentation

@ Increase the size of data by

Rotation: random angle between —7 and 7
Shift: 4 directions

Rescaling: random scaling up/down
Flipping

Gaussian noise

Many others

@ Can be combined perfectly with SGD (augmentation when forming
each batch)

@ One of the most effective regularization for deep neural networks!

Method CIFAR-10 CIFAR-100
Conv Net + max pooling (hand tuned) 15.60 43.48
Conv Net + stochastic pooling (Zeiler and Fergus, 2013) 15.13 42.51
Conv Net + max pooling (Snoek et al., 2012) 14.98 -

Conv Net + max pooling + dropout fully connected layers 14.32 41.26
Conv Net + max pooling + dropout in all layers 12.61 37.20
Conv Net + maxout (Goodfellow et al., 2013) 11.68 38.57

Table 4: Error rates on CIFAR-10 and CIFAR-100.

Classification Ermor %

o

‘Without dropout

200060

360000 550000
Number of weight updates

500000

Srivastava et al, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, 2014.

DA 24/32

Dropout (training)

Dropout in the training phase:
e For each batch, turn off each neuron (including inputs) with a
probability 1 — «
@ Zero out the removed nodes/edges and do backpropagation.

Full network

Xy
Xz

X3

@ @ O
&L LR
O O @& @

1st batch 2nd batch

Dropout (test time)

@ Training: Each neuron computes
/ n_(I-1 I
K = Ba(w5+)
J
where B is a Bernoulli variable that takes 1 with probability a

@ The expected output of the neuron:

E[x ZW//1+b/

@ Use the expected output at test time

= multiply all the weights by «

o For a network with n neurons, there are 27 possible sub-networks
@ Dropout: randomly sample over all 2" possibilities

@ Can be viewed as a way to learn Ensemble of 27 models

DA 27/32

Revisit Alexnet

@ Dropout: 0.5 (in FC layers)
o A lot of data augmentation
@ Momentum SGD with batch size 128, momentum factor 0.9
@ L2 weight decay (L2 regularization)
°

Learning rate: 0.01, decreased by 10 every time when reaching a stable
validation accuracy

@ Very deep convnets do not train well

vanishing gradient problem

20

training error (%)

°

test error (%)

S

56-layer

20-layer

2 3 4
iter. (led)

2 3 4
iter. (le4)

DA 29/32

Residual Networks

o Key idea: introduce “pass through” into each layer

X
\ 4
weight layer
F(x) Jrelu «
weight layer identity
F(X) _+_ X . r‘ﬂlll

@ Thus, only residual needs to be learned

method

top-1 err.

VGG [41] (ILSVRC’14)
GoogLeNet [44] (ILSVRC’14)

VGG [41] (v5) 24.4
PReLU-net [13] 21.59
BN-inception [16] 21.99
ResNet-34 B 21.84
ResNet-34 C 21.53
ResNet-50 20.74
ResNet-101 19.87
ResNet-152 19.38

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except t reported on the test set).

il il

PEEIP PR
HERHREREED

RARYERY

kLl

i

o

Sl
R LLLLLL

5ie

[

e Convolution

] POOling

@ AlexNet

Questions?

DAC 32/32

