STOR566: Introduction to Deep Learning Lecture 7: Convolutional Neural Networks

Yao Li UNC Chapel Hill

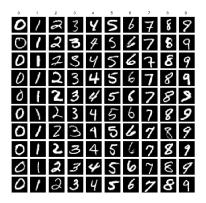
Sep 8, 2022

Materials are from Learning from data (Caltech) and Deep Learning (UCLA)

<□ > < @ > < ≧ > < ≧ > ≧ の Q @ 1/27

MNIST

- Hand-written digits (0 to 9)
- Total 60,000 samples, 10-class classification.



MNIST Classification Accuracy

• See the website by Yann LeCun:

http://yann.lecun.com/exdb/mnist/

Classifier	Test Error		
Linear classifier	12.0 %		
SVM, Gaussian kernel	1.4%		
SVM, degree 4 polynomial	1.1%		
Best SVM result	0.56%		
2-layer NN	$\sim 3.0\%$		
3-layer NN	$\sim 2.5\%$		
CNN, LeNet-5 (1998)	0.85%		
Larger CNN (2011, 2012)	$\sim 0.3\%$		

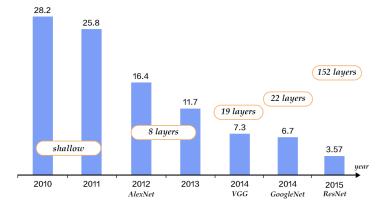
ImageNet Data

- ILSVRC competition: 1000 classes and about 1.2 million images
- Full imagenet: > 20,000 categories, each with about a thousand images.

・ロト・四ト・モー・ 中・ ショー

4/27

ImageNet Results



Top-5 error rates on ILSVRC image classification

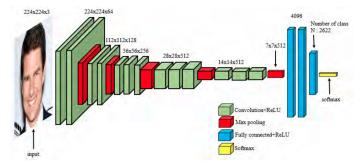
picture from http://www.paddlepaddle.org/documentation/book/en/0.14.0/03. image_classification/index.html

Convolutional Neural Network

<ロト < 部 × 4 差 × 4 差 ト 差 の Q @ 6/27

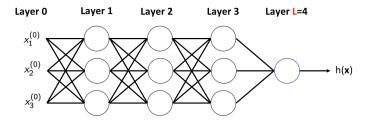
The structure of CNN

• Structure of VGG



<ロ><週><2>、10

- Two important layers:
 - Convolution
 - Pooling



< □ ▶ < 圕 ▶ < 壹 ▶ < 壹 ▶ Ξ · ∽ Q ♀ 8/27

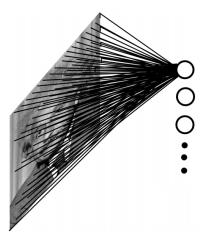
Number of parameters in the network?

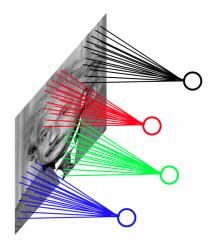
Convolution Layer

- Fully connected layers have too many parameters
 - $\Rightarrow \text{poor performance}$
- Example: VGG first layer
 - Input: $224\times224\times3$
 - Output: $224 \times 224 \times 64$
 - Number of parameters if we use fully connected net: $(224 \times 224 \times 3) \times (224 \times 224 \times 64) = 483$ billion

- Convolution layer leads to:
 - Local connectivity
 - Parameter sharing

Local connectivity





イロト イロト イヨト イヨト

э

(Figure from Salakhutdinov 2017)

Parameter Sharing

• Making a reasonable assumption:

If one feature is useful to compute at some spatial position (x, y), then it should also be useful to compute at a different position (x_2, y_2)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 11/27

• Using the convolution operator

Convolution

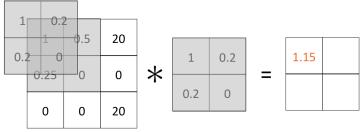
• The convolution of an image x with a kernel k is computed as

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{p,q}$$

1	0.5	20			0.5		
0.25	0	0	*	1	0.5	=	
0	0	20			0.25	0	

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ → ♡ < ♡ _{12/27}

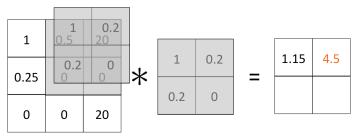
Convolution



1*1 + 0.5*0.2 + 0.25*0.2 + 0*0 = 1.15

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ 13/27

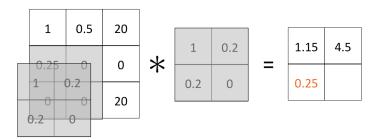
Convolution



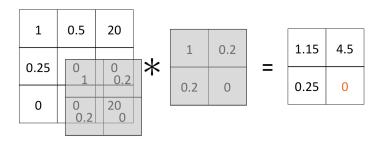
◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ • • ○ へ ○ 14/27

0.5*1 + 20*0.2 + 0*0.2 + 0*0 = 4.5

0.25*1 + 0*0.2 + 0*0.2 + 0*0 = 0.25



 $0^{*}1 + 0^{*}0.2 + 0^{*}0.2 + 20^{*}0 = 0$



< □ ▶ < @ ▶ < \ = ▶ < \ = ・ の へ ? 16/27

Multiple Channels

• Multiple input channels:

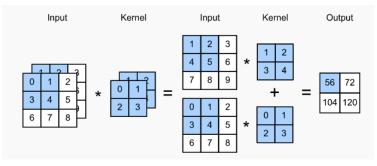


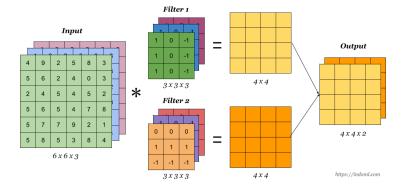
Image from Dive into Deep Learning

• $(1 \times 1 + 2 \times 2 + 4 \times 3 + 5 \times 4) + (0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3) = 56$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 17/27

Multiple Channels

• Multiple input channels and output channels:

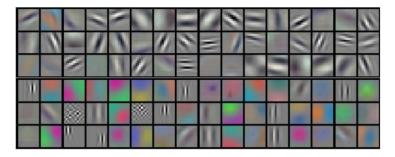


< □ ▶ < @ ▶ < \ > ↓ < \ > ↓ \ = り < \ > 2 の < C 18/27

• Number of parameters: $k_1 \times k_2 \times d_{in} \times d_{out} + d_{out}$

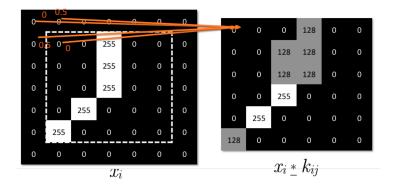
Learned Kernels

• Example kernels learned by AlexNet



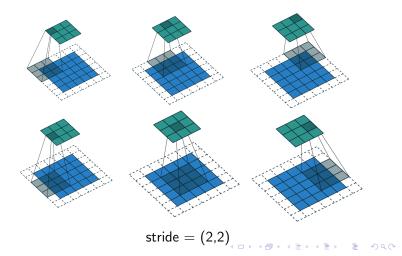
Padding

- Use zero padding to allow going over the boundary
 - Easier to control the size of output layer



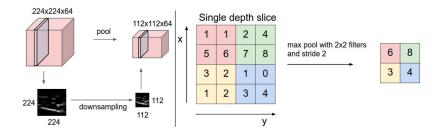
Strides

- Stride: The amount of movement between applications of the filter to the input image
- Strude = (1, 1): no stride

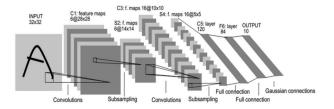


Pooling

- It's common to insert a pooling layer in-between successive convolutional layers
- Reduce the size of representation, down-sampling
- Example: Max Pooling



Example: LeNet5

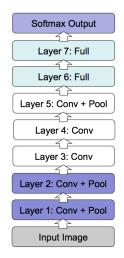


- Input: 32×32 images (MNIST)
- Convolution 1: 6 5 imes 5 filters, stride 1
 - Output: 6 28 × 28 maps
- Pooling 1: 2×2 max pooling, stride 2
 - Output: 6 14×14 maps
- Convolution 2: 16 5 \times 5 filters, stride 1
 - Output: 16 10×10 maps
- Pooling 2: 2×2 max pooling with stride 2
 - Output: 16 5 \times 5 maps (total 400 values)
- 3 fully connected layers: $120 \Rightarrow 84 \Rightarrow 10$ neurons is the second system of the second system in the second system is the second system of the second system in the second system is the second system of the second system is the second system of the second syste

AlexNet

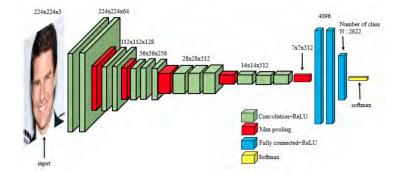
- 8 layers in total, about 60 million parameters and 650,000 neurons.
- Trained on ImageNet dataset

"ImageNet Classification with Deep Convolutional Neural Networks", by Krizhevsky, Sustskever and Hinton, NIPS 2012.



◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ の Q @ 24/27

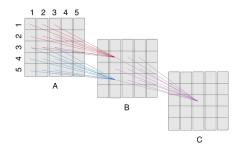
Example: VGG Network



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ Q ○ 25/27

What do the kernels learn?

- The receptive field of a neuron is the input region that can affect the neuron's output
- The receptive field for a first layer neuron is its neighbors (depending on kernel size) ⇒ capturing very local patterns
- \bullet For higher layer neurons, the receptive field can be much larger \Rightarrow capturing global patterns



Conclusions

- Convolution
- Pooling

Questions?

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 27/27