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STOR566: Introduction to Deep Learning
Lecture 6: Neural Networks

Yao Li
UNC Chapel Hill

Sep 1, 2022

Materials are from Learning from data (Caltech) and Deep Learning (UCLA)
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Neural Networks
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Another way to introduce nonlinearity

How to generate this nonlinear hypothesis?

Combining multiple linear hyperplanes to construct nonlinear hypothesis



3/33

Another way to introduce nonlinearity

How to generate this nonlinear hypothesis?

Combining multiple linear hyperplanes to construct nonlinear hypothesis



4/33

Neural Network

Input layer: d neurons (input features)

Neurons from layer 1 to L: Linear combination of previous layers +
activation function

θ(wTx), θ : activation function

Final layer: one neuron ⇒ prediction by sign(h(x))
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Activation Function
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Formal Definitions

Weight: w
(l)
i j


1 ≤ l ≤ L : layers

0 ≤ i ≤ d (l−1) : inputs

1 ≤ j ≤ d (l) : outputs

bias: b
(l)
j : added to the j-th neuron in the l-th layer

j-th neuron in the l-the layer:

x
(l)
j = θ(s

(l)
j ) = θ(

d (l−1)∑
i=0

w
(l)
ij x

(l−1)
i + b

(l)
j )

Output:

h(x) = x
(L)
1
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Forward propagation
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Forward propagation
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Forward propagation
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Forward propagation

With the bias term: h(x) = θ(W4θ(W3θ(W2θ(W1x + b1) + b2) + b3) + b4)
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Example: Forward Pass Computation

Input data: x = (1.5,−1.0, 1.3)T

Activation: ReLU (θ(x) = max(0, x))

Weights:

W1 =

 0.3 0.4 0.2
0.3 0.5 0.2
0.8 1.0 −1.0

 ,W2 =

(
0 −1.2 0.5
0.9 1.0 0

)
W3 = (−1.0, 1.0)

Please compute h(x).
Reminder: h(x) = θ(W3θ(W2θ(W1x)))
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Training

Weights W = {W1, · · · ,WL} and bias {b1, · · · ,bL} determine h(x)
Learning the weights: solve ERM with SGD.

Loss on example (xn, yn) is

e(h(xn), yn) = e(W )

To implement SGD, we need the gradient

∇e(W ) : {∂e(W )

∂w
(l)
ij

} for all i , j , l

(for simplicity we ignore bias in the derivations)
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Computing Gradient ∂e(W )

∂w
(l)
ij

Use chain rule:

∂e(W )

∂w
(l)
ij

=
∂e(W )

∂s
(l)
j

×
∂s

(l)
j

∂w
(l)
ij

s
(l)
j =

∑d
i=1 x

(l−1)
i w

(l)
ij

We have
∂s

(l)
j

∂w
(l)
ij

= x
(l−1)
i
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Computing Gradient ∂e(W )

∂w
(l)
ij

Define δ
(l)
j := ∂e(W )

∂s
(l)
j

Compute by layer-by-layer:

δ
(l−1)
i =

∂e(W )

∂s
(l−1)
i

=
d∑

j=1

∂e(W )

∂s
(l)
j

×
∂s

(l)
j

∂x
(l−1)
i

×
∂x

(l−1)
i

∂s l−1
i

=
d∑

j=1

δ
(l)
j × w

(l)
ij × θ′(s

(l−1)
i ),

where θ′(s) = 1− θ2(s) for tanh

δ
(l−1)
i = (1− (x

(l−1)
i )2)

∑d
j=1 w

(l)
ij δ

(l)
j
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Final layer

(Assume square loss)

e(W ) = (x
(L)
1 − yn)

2

x
(L)
1 = θ(s

(L)
1 )

So,

δ
(L)
1 =

∂e(W )

∂s
(L)
1

=
∂e(W )

∂x
(L)
1

×
∂x

(L)
1

∂s
(L)
1

= 2(x
(L)
1 − yn)× θ′(s

(L)
1 )



22/33

Backward propagation
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Backward propagation
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Backward propagation
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Backward propagation
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Backward propagation
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Backward propagation
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Backpropagation

SGD for neural networks

Initialize all weights w
(l)
ij at random

For iter = 0, 1, 2, · · ·
Forward: Compute all x

(l)
j from input to output

Backward: Compute all δ
(l)
j from output to input

Update all the weights w l
ij ← w

(l)
ij − ηx

(l−1)
i δ

(l)
j



30/33

Backpropagation

Just an automatic way to apply chain rule to compute gradient

Auto-differentiation (AD) — as long as we define derivative for each
basic function, we can use AD to compute any of their compositions

Implemented in most deep learning packages

(e.g., pytorch, tensorflow)

Auto-differentiation needs to store all the intermediate nodes of each
sample

⇒ Memory cost

⇒ This poses a constraint on the batch size
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Multiclass Classification

K classes: K neurons in the final layer

Output of each fi is the score of class i

Taking argmaxi fi (x) as the prediction



32/33

Multiclass loss

Softmax function: transform output to probability:

[f1, · · · , fK ]→ [pi , · · · , pK ]

where pi =
efi∑K
j=1 e

fj

Cross-entropy loss:

L = −
K∑
i=1

yi log(pi )

where yi is the i-th label
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Conclusions

Neural network

Forward propagation

Back-propagation for computing gradient

Questions?


