STOR566: Introduction to Deep Learning
 Lecture 6: Neural Networks

Yao Li
UNC Chapel Hill

Sep 1, 2022

Neural Networks

Another way to introduce nonlinearity

- How to generate this nonlinear hypothesis?

Another way to introduce nonlinearity

- How to generate this nonlinear hypothesis?

- Combining multiple linear hyperplanes to construct nonlinear hypothesis

Neural Network

- Input layer: d neurons (input features)
- Neurons from layer 1 to L : Linear combination of previous layers + activation function

$$
\theta\left(\boldsymbol{w}^{T} \boldsymbol{x}\right), \quad \theta: \text { activation function }
$$

- Final layer: one neuron \Rightarrow prediction by $\operatorname{sign}(h(x))$

Activation Function

Sigmoid $\sigma(x)=\frac{1}{1+e^{-x}}$

tanh $\tanh (x)$

ReLU $\max (0, x)$

Formal Definitions

Weight: $w_{i j}^{(I)} \begin{cases}1 \leq I \leq L & \text { : layers } \\ 0 \leq i \leq d^{(I-1)} & \text { : inputs } \\ 1 \leq j \leq d^{(I)} & \text { : outputs }\end{cases}$
bias: $b_{j}^{(I)}$: added to the j-th neuron in the l-th layer

Formal Definitions

Weight: $w_{i j}^{(I)} \begin{cases}1 \leq I \leq L & \text { : layers } \\ 0 \leq i \leq d^{(I-1)} & \text { : inputs } \\ 1 \leq j \leq d^{(I)} & \text { : outputs }\end{cases}$
bias: $b_{j}^{(I)}$: added to the j-th neuron in the l-th layer
j-th neuron in the l-the layer:

$$
x_{j}^{(I)}=\theta\left(s_{j}^{(I)}\right)=\theta\left(\sum_{i=0}^{d^{(I-1)}} w_{i j}^{(I)} x_{i}^{(I-1)}+b_{j}^{(I)}\right)
$$

Formal Definitions

Weight: $w_{i j}^{(I)} \begin{cases}1 \leq I \leq L & \text { : layers } \\ 0 \leq i \leq d^{(I-1)} & \text { : inputs } \\ 1 \leq j \leq d^{(I)} & \text { : outputs }\end{cases}$
bias: $b_{j}^{(I)}$: added to the j-th neuron in the l-th layer
j-th neuron in the l-the layer:

$$
x_{j}^{(I)}=\theta\left(s_{j}^{(I)}\right)=\theta\left(\sum_{i=0}^{d^{(I-1)}} w_{i j}^{(I)} x_{i}^{(I-1)}+b_{j}^{(I)}\right)
$$

Output:

$$
h(\boldsymbol{x})=x_{1}^{(L)}
$$

Forward propagation

Forward propagation

Layer 0 Layer 1 Layer 2 Layer 3 Layer L=4

features for one data point

$$
\mathbf{x}=\left[x_{1}, x_{2}, x_{3}\right]
$$

Forward propagation

Forward propagation

Forward propagation

Forward propagation

Layer 0 Layer 1 Layer 2 Layer 3 Layer $\mathrm{L}=4$

$$
\boldsymbol{x}^{(1)}=\left[\begin{array}{l}
x_{1}^{(1)} \\
x_{2}^{(1)} \\
x_{3}^{(1)}
\end{array}\right]=\theta\left(\left[\begin{array}{lll}
w_{11}^{(1)} & w_{21}^{(1)} & w_{31}^{(1)} \\
w_{12}^{(1)} & w_{22}^{(1)} & w_{32}^{(1)} \\
w_{13}^{(1)} & w_{23}^{(1)} & w_{33}^{(1)}
\end{array}\right] \times\left[\begin{array}{l}
x_{1}^{(0)} \\
x_{2}^{(0)} \\
x_{3}^{(0)}
\end{array}\right]\right)=\theta\left(W_{1} \boldsymbol{x}^{(0)}\right)
$$

Forward propagation

Forward propagation

Forward propagation

$$
\boldsymbol{x}^{(2)}=\left[\begin{array}{l}
x_{1}^{(2)} \\
x_{2}^{(2)} \\
x_{3}^{(2)}
\end{array}\right]=\theta\left(\left[\begin{array}{lll}
w_{11}^{(2)} & w_{21}^{(2)} & w_{31}^{(2)} \\
w_{12}^{(2)} & w_{22}^{(2)} & w_{32}^{(2)} \\
w_{13}^{(2)} & w_{23}^{(2)} & w_{33}^{(2)}
\end{array}\right] \times\left[\begin{array}{l}
x_{1}^{(1)} \\
x_{2}^{(1)} \\
x_{3}^{(1)}
\end{array}\right]\right)=\theta\left(w_{2} \boldsymbol{x}^{(1)}\right)
$$

Forward propagation

Forward propagation

With the bias term: $h(\boldsymbol{x})=\theta\left(W_{4} \theta\left(W_{3} \theta\left(W_{2} \theta\left(W_{1} \boldsymbol{x}+\boldsymbol{b}_{1}\right)+\boldsymbol{b}_{2}\right)+\boldsymbol{b}_{3}\right)+\boldsymbol{b}_{4}\right)$

Example: Forward Pass Computation

- Input data: $\boldsymbol{x}=(1.5,-1.0,1.3)^{T}$
- Activation: $\operatorname{ReLU}(\theta(x)=\max (0, x))$
- Weights:

$$
\begin{aligned}
& W_{1}=\left(\begin{array}{lll}
0.3 & 0.4 & 0.2 \\
0.3 & 0.5 & 0.2 \\
0.8 & 1.0 & -1.0
\end{array}\right), W_{2}=\left(\begin{array}{lll}
0 & -1.2 & 0.5 \\
0.9 & 1.0 & 0
\end{array}\right) \\
& W_{3}=(-1.0,1.0)
\end{aligned}
$$

- Please compute $h(\boldsymbol{x})$.
- Reminder: $h(\boldsymbol{x})=\theta\left(W_{3} \theta\left(W_{2} \theta\left(W_{1} \boldsymbol{x}\right)\right)\right)$

Training

- Weights $W=\left\{W_{1}, \cdots, W_{L}\right\}$ and bias $\left\{\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{L}\right\}$ determine $h(\boldsymbol{x})$
- Learning the weights: solve ERM with SGD.
- Loss on example $\left(x_{n}, y_{n}\right)$ is

$$
e\left(h\left(x_{n}\right), y_{n}\right)=e(W)
$$

Training

- Weights $W=\left\{W_{1}, \cdots, W_{L}\right\}$ and bias $\left\{\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{L}\right\}$ determine $h(\boldsymbol{x})$
- Learning the weights: solve ERM with SGD.
- Loss on example $\left(x_{n}, y_{n}\right)$ is

$$
e\left(h\left(\boldsymbol{x}_{n}\right), y_{n}\right)=e(W)
$$

- To implement SGD, we need the gradient

$$
\nabla e(W):\left\{\frac{\partial e(W)}{\partial w_{i j}^{(I)}}\right\} \text { for all } i, j, l
$$

(for simplicity we ignore bias in the derivations)

Computing Gradient $\frac{\partial e(W)}{\partial w_{i j}^{(I)}}$

- Use chain rule:

$$
\frac{\partial e(W)}{\partial w_{i j}^{(I)}}=\frac{\partial e(W)}{\partial s_{j}^{(I)}} \times \frac{\partial s_{j}^{(I)}}{\partial w_{i j}^{(I)}}
$$

$s_{j}^{(I)}=\sum_{i=1}^{d} x_{i}^{(I-1)} w_{i j}^{(I)}$

- We have $\frac{\partial s_{j}^{(I)}}{\partial w_{i j}^{(I)}}=x_{i}^{(I-1)}$

Computing Gradient $\frac{\partial e(W)}{\partial w_{i j}^{(I)}}$

- Define $\delta_{j}^{(I)}:=\frac{\partial e(W)}{\partial s_{j}^{(I)}}$
- Compute by layer-by-layer:

$$
\begin{aligned}
\delta_{i}^{(I-1)} & =\frac{\partial e(W)}{\partial s_{i}^{(I-1)}} \\
& =\sum_{j=1}^{d} \frac{\partial e(W)}{\partial s_{j}^{(I)}} \times \frac{\partial s_{j}^{(I)}}{\partial x_{i}^{(I-1)}} \times \frac{\partial x_{i}^{(I-1)}}{\partial s_{i}^{I-1}} \\
& =\sum_{j=1}^{d} \delta_{j}^{(I)} \times w_{i j}^{(I)} \times \theta^{\prime}\left(s_{i}^{(I-1)}\right)
\end{aligned}
$$

where $\theta^{\prime}(s)=1-\theta^{2}(s)$ for tanh

- $\delta_{i}^{(I-1)}=\left(1-\left(x_{i}^{(I-1)}\right)^{2}\right) \sum_{j=1}^{d} w_{i j}^{(I)} \delta_{j}^{(I)}$

Final layer

(Assume square loss)

- $e(W)=\left(x_{1}^{(L)}-y_{n}\right)^{2}$

$$
x_{1}^{(L)}=\theta\left(s_{1}^{(L)}\right)
$$

- So,

$$
\begin{aligned}
\delta_{1}^{(L)} & =\frac{\partial e(W)}{\partial s_{1}^{(L)}} \\
& =\frac{\partial e(W)}{\partial x_{1}^{(L)}} \times \frac{\partial x_{1}^{(L)}}{\partial s_{1}^{(L)}} \\
& =2\left(x_{1}^{(L)}-y_{n}\right) \times \theta^{\prime}\left(s_{1}^{(L)}\right)
\end{aligned}
$$

Backward propagation

Backpropagation

SGD for neural networks

- Initialize all weights $w_{i j}^{(I)}$ at random
- For iter $=0,1,2, \ldots$
- Forward: Compute all $x_{j}^{(I)}$ from input to output
- Backward: Compute all $\delta_{j}^{(I)}$ from output to input
- Update all the weights $w_{i j}^{\prime} \leftarrow w_{i j}^{(I)}-\eta x_{i}^{(I-1)} \delta_{j}^{(I)}$

Backpropagation

- Just an automatic way to apply chain rule to compute gradient
- Auto-differentiation (AD) - as long as we define derivative for each basic function, we can use AD to compute any of their compositions
- Implemented in most deep learning packages
(e.g., pytorch, tensorflow)

Backpropagation

- Just an automatic way to apply chain rule to compute gradient
- Auto-differentiation (AD) - as long as we define derivative for each basic function, we can use AD to compute any of their compositions
- Implemented in most deep learning packages
(e.g., pytorch, tensorflow)
- Auto-differentiation needs to store all the intermediate nodes of each sample
\Rightarrow Memory cost
\Rightarrow This poses a constraint on the batch size

Multiclass Classification

- K classes: K neurons in the final layer
- Output of each f_{i} is the score of class i

Taking $\arg \max _{i} f_{i}(x)$ as the prediction
features for one data point $x=\left[x_{1}, x_{2}, x_{3}\right]$

Multiclass loss

- Softmax function: transform output to probability:

$$
\left[f_{1}, \cdots, f_{K}\right] \rightarrow\left[p_{i}, \cdots, p_{K}\right]
$$

where $p_{i}=\frac{e^{f_{i}}}{\sum_{j=1}^{K} e^{f_{j}}}$

- Cross-entropy loss:

$$
L=-\sum_{i=1}^{K} y_{i} \log \left(p_{i}\right)
$$

where y_{i} is the i-th label

Conclusions

- Neural network
- Forward propagation
- Back-propagation for computing gradient

Questions?

