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Materials are from Learning from data (Caltech) and Deep Learning (UCLA)
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@ Linear Support Vector Machines

@ Nonlinear SVM, Kernel methods
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Support Vector Machines

e Given training examples (x1,y1),- -, (xn, Yn)
Consider binary classification: y; € {+1, -1}
@ Linear Support Vector Machine (SVM):
< 1
arg mMi/n N z; max(1 — yiw " x;,0) + EWTW
=

(hinge loss with L2 regularization)
B. -

Loss

— Classification error
- - Hinge loss

“““ Logistic loss

—— Squared loss
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@ Which line is the best?
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@ Which line is the best?

@ Why big margin?

@ Which w maximizes the margin?
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.WT

x = 0: the separation line or hyperplane
@ X, the nearest data point to the plane

Xn
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.WT

x = 0: the separation line or hyperplane
@ X, the nearest data point to the plane

Xn

Preliminary:

@ Normalize w:

lw ™

Xn|| =
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-
@ The vector w is orthogonal to the plane in the X" space

@ The distance between x, and the plane w

x =0.
Take x" and x” on the plane
wix =0, w'x =0

—w'(x —x")=0

ox,

1W

)z
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Tx =0:

@ The distance between x, and the plane w

Take any point x on the plane
Project x, — x on w:

distance =

1 1
”T”|WT(Xn —x)| = m|WTxn — wa| = —

[[wll
X,
o/
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@ The optimization problem for SVM:

1
max —
wo
st. min |wix|=1,
i=1,.,
@ Equivalent to:

min —w ' w
w 2

st.yw'x;>1,i=1,...,N,
Notice: |w'x;| = yiw " x;
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Two Types of Non-separable

slightly:
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seriously:




Support Vector Machines

o Given training data x,- - -

@ SVM problem with soft constraints:

we 2 NZS’

min fw W+

s.t. yiw X,' >1

_gia
gizoai:]-a"'a

,xy € RY with labels y; € {+1, —1}.
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Support Vector Machines

@ SVM problem:

1 cd

. T

rxlg EW W+N;§;

s.t. y,'(WTX,') >1 —f,‘,
£>0,i=1,...,N.

@ Equivalent to
1 C &
min EWTW —|—Nz;max(0,1—y,-wa,-)
=

w
——
L2 regularization

hinge loss



SVM: Unconstrained

@ Unconstrained optimization:

. 1
min EWTW E max(0 y,-wa;)
w
—_——
L2 regularization

hinge loss

e Equivalent to:

i g fo

s.t. & > max(0,1 —y,-wa,-)7 i=1,...,N.



SVM: Unconstrained

@ Unconstrained optimization:

1 CY
. T T
min  —w'w —|——Zmax01— WX
w 2 N — ( ’ Yi l)
N’ = .
L2 regularization hinge loss

e Equivalent to:

1 <
min pwlw 26

s.t. & > max(0,1 —y,-wa,-)7 i=1,...,N.
e Equivalent to:

1 C &
- T
min W Wty 26

st. &, >1—yw!x,&>0,i=1,..., N.



Stochastic Subgradient Method for SVM

1
mullniw Tw+ = Zmax(O 1—yw’x)

e A subgradient of max(0,1 — y;w " x;):

—yixi  ifl—ywTx; >0
0 ifl—yw'x <0
0 ifl—yw'x; =0

@ Stochastic Subgradient descent for SVM:
Fort=1,2,...
Randomly pick an index i
If yiwTx; < 1, then
w < w —n(w — Cy;x;)
Else (if yiw " x; > 1):
W< w— 1w



Kernel SVM



Non-linearly separable problems

@ What if the data is not linearly separable?
Solution: map data x; to higher dimensional(maybe infinite) feature
space ¢(x;), where they are linearly separable.

o Example: p(x) = (x,x%)7T



Non-linearly separable problems

@ What if the data is not linearly separable?
Solution: map data x; to higher dimensional(maybe infinite) feature
space ¢(x;), where they are linearly separable.

o Example: op(x) = (x,x%)7T
1-Dimensional Linearly 1-Dimensional Linearly
Inseparable Classes : Inseparable Classes transformed with

Polynomial Kernel of Degree 2

’\:1 .
-0-000-90—00—00 0 ®

X,
1



Data projected to R~2 (nonseparable)
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Y Label
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Data in R™3 (separable)
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@ SVM with nonlinear mapping ¢(-):

C n

: T

mn -w w+ — i
st.oyi(wlo(x)>1-¢, &>0,i=1,

oo,
@ Hard to solve if ¢(-) maps to very high or infinite dimensional space
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Support Vector Machines

@ Primal problem:
1
g I+ gy 26
st.yiw o(x;)—1+& >0 and & >0 Vi=1,...,N

@ Convex objective and linear constraints

e Equivalent to (Dual problem):

max m|anwH2 NZ&, Za, yiwTo(x;) —1+&) Z/Bfl

a>0,8>0 w



Support Vector Machines (dual)
@ Reorganize the equation:
C
- 2 o T . (= . A .
a>n(1)a/;(>0nmq/|? ”WH Zal%w VQ(XI)'FZ&:(N Qi 51)‘*‘2“/
e By KKT, for any given «, 3, the minimizer will satisfy

oL "
W Zaiy/'@(xi) =0 =w = Zyiaisﬁ(xi)

gé:(c_al_ﬁlw--

N =qa;+ B, Vi
@ Substitue these two equations back we get

C ; C
7N_QN_/BN) =0 :>N

max oo x x + «;
«>0,8>0, £—a+ﬁ 2 Z Jy’yjy : J Z ,



Support Vector Machines (dual)

@ Therefore, we get the following dual problem

max {—faTQoH—lTa} = D(av),
0<a<c
where @ is an N by N matrix with Q; = yiy;o(xi) T ¢(x;)
@ Based on the derivations,

@ We can solve the dual problem instead of the primal problem.
@ Let o™ be the dual solution and w* be the primal solution, we have

w =3 yiaio(x)
i

e To solve the dual, we only need to know ¢(x;) T ¢(x;).



e Do not directly define o(+)

@ Instead, define “kernel”

K(xi,x;) = o(xi) T o(x))
This is all we need to know for Kernel SVM!
@ Examples:

. — pR— 2
o Gaussian kernel: K(x;,x;) = e~ Ix—xl

o Polynomial kernel: K(x;,x;) = (yx, x; + ¢)?
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The Trick

e Can we compute K(x,x') without transforming x and x'?

@ Example:
Consider a transformation o(x) = (1,52, x2,v/2x1, vV2x2, V2x1%2)
The inner product between ¢(x) and ¢(x')

K(x,x') = p(x)To(x') = (1 +x"x)?

e Computation cost: (1 + xTx/)2 Vs. cp(X)TSO(X/)



The Trick

e Can we compute K(x,x') without transforming x and x'?
@ Example:

Consider a transformation o(x) = (1,52, x2,v/2x1, vV2x2, V2x1%2)
The inner product between ¢(x) and ¢(x')

K(x,x') = p(x)To(x') = (1 +x"x)?

o Computation cost: (14 x7x")2 vs. p(x)To(x")
@ Example: Simple one-dimensional Gaussian kernel maps to
infinite-dimensional space

K(xi, xj) = exp(—%(xi - Xj)2)

1
:exp(—éx, exp( —fx Z k'



e Training: compute & = [, - -+ , ] by solving the quadratic
optimization problem:

T

min —a’'Qa—-1"a
0<a<C 2

where Q; = K(xi, x;)
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e Training: compute & = [, - -+ , ] by solving the quadratic
optimization problem:
min —a’' Qa—1"Ta
0<a<C 2
where Q; = K(xi, x;)

@ Prediction: for a test data x,

N
wTo(x) =Y yicie(x) T o(x)
i=1

N
= yioiK(xi, x)
i=1
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e SVM, Kernel SVM

Questions?
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