Yao Li
UNC Chapel Hill

Aug 23, 2022

Materials are from Learning from data (Caltech) and Deep Learning (UCLA)

DA™

1/31

Linear Regression

@ Regression: predicting a real number

Output

» 4000

Input
age 23
Annual salary 30,000
Year in residence 1
Year in job 1
X

h(x)

DA 3/31

@ Regression: predicting a real number

Input Output
age 23
Annual salary 30,000
Year in residence 1

» 4000
Year in job 1

h(x)
Linear Regression: h(x) = >

_ T
i—o WiXi = w' X

DA 3/31

o Training data:

(Xl,}’1), (x27y2)7 te ;(XN,YN)
X, € RY: feature vector for a sample

¥n € R: observed output (real number)

DA 4/31

o Training data:

(Xl,}’1), (x27y2)7) (XN,YN)
X, € RY: feature vector for a sample

¥n € R: observed output (real number)

o Linear regression: find a function h(x) = w x to approximate y

DA 4/31

Problem definition

@ Training data:
(x1, 1), (x2,2), -+, (XN, yv)
x, € RY: feature vector for a sample
¥n € R: observed output (real number)
o Linear regression: find a function h(x) = w' x to approximate y
o Measure the error by (h(x) — y)? ()

1
Training error :Lypin(h) = N Z(h(x,,) — y,,)2

= (1,) € B

Linear regression: find linear function with small residual

A 5/31

min f(w) = | Xw —y|?
w
o X e RNxd y c RN

@ The objective function is continuous, differentiable, convex
@ The optimal w* will satisfy:

of

Dy (W*)

DA 6/31

fw)=||Xw—y[|?=w"X"Xw—-2w"XTy+yy

DA 7/31

/

-

«<O> < 4

>

DA g/31

Vi(w*) =0= X"Xw*=XTy

-

=>w'=(XTX)1xTy 72

DA g/31

e Case I: X7 X is invertible = Unique solution
e Often when N > d

o wh = (XTX)"1XTy

e Case II: X7 X is non-invertible = Many solutions
o Often when d > N

Casel

X' X
N
= - |
N

DA 9/31

e Case I: X7 X is invertible = Unique solution
e Often when N > d

o wh = (XTX)"1XTy

e Case II: X7 X is non-invertible = Many solutions
o Often when d > N

Casel

XT X

« g !
Casell ¢ M\E’= .

pseudo-inverse of X T X

DA 9/31

Logistic Regression

Binary Classification

e Input: training data x1, xo, ..., x, € RY and corresponding outputs
Yi,¥2,---5s¥n € {+17 _1}
e Training: compute a function f such that sign(f(x;)) ~ y; for all i

e Prediction: given a testing sample X, predict the output as sign(f (X))

@ Assume linear scoring function: s = f(x) = w

Tx

DA 12/31

@ Assume linear scoring function: s = f(x) = w
o Logistic hypothesis:

T

x
Ply =1]x)=0(w'x),
where 6(s) = % = #

DA 12/31

@ Assume linear scoring function: s = f(x) = w
o Logistic hypothesis:

Tx

P(y =1]x)=0(w'x),
where 0(s) = ﬁses = #

@ How about P(y = -1 x)?

DA 13/31

@ Assume linear scoring function: s = f(x) = w
o Logistic hypothesis:

Tx
P(y =1]x)=0(w'x),
where 0(s) = ﬁses = #
@ How about P(y = -1 x)?
P(y =1 | X) =1- 1+eEwa = 1+e1wa = 9(—WTX)

DA 13/31

o Assume linear scoring function: s = f(x) = w'x

o Logistic hypothesis:

P(y =1]x)=0(w'x),

_ e _ 1
where 9(5) = T4es = Txes

@ How about P(y = -1 x)?

P(y =1 | X) =1- 1+eEwa = 1+e1wa = 9(—WTX)

o Therefore, P(y | x) = 6(yw x)

u]
&)
1
n
it

DA 13/31

o Likelihood of D = (x1,y1),--- , (Xn, yn):

rlnNzlP(.yn | Xn) = nnNzle(anTxn)

DA 14/31

Maximizing the likelihood

o Likelihood of D = (x1,¥1),- - , (xn, yn):

nN —1P(yn | Xn) = I_I,’Y:19(y,,wan)

@ Find w to maximize the likelihood!
max I_InN:19(y,,wa,,)
w

< max |og(|_|,I¥:19(anTxn))
w
N

~ mmi/n - Z Iog(e(y,,wa,,))
n=1

@mleog + e X")

Empirical Risk Minimization (linear)

@ Linear classification/regression:

N
; oss(w'x, y ¥n)

Yn:the predicted score

o Linear regression: loss(h(x,),yn) = (W' x, — yn)?
o Logistic regression: loss(h(x,), yn) = log(1 + e=¥»w x)

o Hinge loss (SVM): loss(h(x,), y,,) = max(0,1 — y,w’x,)

loss

y * wix

Binary Classification Loss

o Linear regression: loss(h(x,), yn) = (W x, — y5)?

e Logistic regression: loss(h(x,),yn) = log(1 + e*y"""T"")
e Hinge loss (SVM): loss(h(xs), ¥n) = max(0,1 — y,w x,,)

Loss

yw'x

Empirical Risk Minimization (general)
@ Assume fyy(x) is the decision function to be learned

(W is the parameters of the function)

o General empirical risk minimization:

N
1
min Nz_:lloss(fw(xn)7Yn)

e Example: Neural network (fiy(+) is the network)

Gradient descent and SGD

@ Goal: find the minimizer of a function

min f(w)

For now we assume f is twice differentiable

f(w)

Optimal Solution

DA 19/31

Convex vs Nonconvex

@ Convex function:
e Vf(x) =0 < Global minimum
o A function is convex if V2f(x) is positive definite
e Example: linear regression, logistic regression, - - -
@ Non-convex function:
o Vf(x) =0 <« Global min, local min, or saddle point
most algorithms only converge to gradient= 0
e Example: neural network, - - -

Convex Non-Convex

Saddle point

Local min

Minimizer Global min

o Gradient descent: repeatedly do

witl wt — aVf(w?h)

a > 0 is the step size

@ Step size too large = diverge; too small = slow convergence

10"°

—stepsize 0.001
—stepsize 0.01
—stepsize 0.1

Error

DA 21/31

Why gradient descent?

@ At each iteration, form an approximation function of f(+):
1
f(w +d) ~ g(d) = f(w") + VF(w")"d + | d|*

e Update solution by wit! « wt + d*
e d* = argming g(d)
Vg(d*) =0= Vf(wt)+ 1d*=0=d* = —aVf(w')

o d* will decrease f(-) if a (step size) is sufficiently small

f(w)

DA 2331

g(d) ~ f(wt+d)

wt

Form a quadratic approximation

1
f(w+d) ~ g(d) = f(w) + VF(w")"d + S| d|?

[m]

=

DA 24/31

g(d) ~ f(w'+d)

Minimize g(d):

1 * *:—Vf t
Vg(d)=0= Vf(w)+ d"=0=d aVf(wh)

= = = (€4 /31
=] 5 = DQ 25/3

Update w:

Wf+1 = wt +d* = Wt_avf(Wt)

DA 26/31

g(d) ~ f(wt*1+d)

flw)

wt wt+1

=] 5 = = = DAC g7/31

g(d) ~ f(wt*1+d)

flw)

d*

wt wt+1 wt+2

=] 5 = = = DAC 28/31

o Let L be a constant such that V2f(x) =< L/ for all x

@ Theorem: gradient descent converges if a < %
e Optimal choice: a < %

@ In practice, we do not know L ---

need to tune step size when running gradient descent

DA 29/31

Applying to Logistic regression

gradient descent for logistic regression

@ Initialize the weights wy
@ Fort=1,2,...
o Compute the gradient

N
1 YnXn

Viw) = —— Y — 2
(W) N e 1+ ernwix,

o Update the weights: w < w — nVf(w)

@ Return the final weights w

Applying to Logistic regression

gradient descent for logistic regression

@ Initialize the weights wy
@ Fort=1,2,...
o Compute the gradient

N
1 YnXn

Viw) = —— Y — 2
(W) N e 1+ ernwix,

o Update the weights: w < w — nVf(w)

@ Return the final weights w

When to stop?
@ Fixed number of iterations, or
e Stop when ||Vf(w)|| < e

Conclusions

@ Linear regression:

e Square loss = solving a linear system
o Closed form solution

o Logistic regression:
e A classification model based on a probability assumption

@ Gradient descent: an iterative solver

Questions?

