STOR566: Introduction to Deep Learning

Lecture 1: Overview

Yao Li UNC Chapel Hill

Aug 16, 2022

Outline

- Course information
- Overview of machine learning

Course Information - Instructor

Instructor:

Name: Yao Li

• Email: yaoli@email.unc.edu

• Office Hours: TTH 11AM-12PM, Hanes 334

• Course Website: https://liyao880.github.io/stor566/

Course Information - Tutorial

Tutorial

Length: 30min

Topic: homework review and coding

• Time: Check the Course Website

Don't forget to bring your laptop on tutorial day.

Course Information - Assistant

TA:

Name: Minji Kim

Email: mkim5@unc.edu

Office Hours: W 10AM - 12PM

zoom link: https://zoom.us/j/5869650522?pwd=
bHJOcnVscFIvblJaSk5idFVuWXFXUT09 (Passcode:stor566)

Grader:

Name: Zheng Bao

Email: zhengbao@email.unc.edu

Course Information - General

• There is no textbook. Most of the topics are covered in

"Elements of Statistical Learning" (by Friedman, Tibshirani, and Hastie)

"Deep Learning" (by Goodfellow, Bengio, Courville)

Topics

Deep Learning Foundation

Background (Linear model, loss function, generalization)

Optimization

Neural network and back-propagation

Basic training techniques (e.g., dropout, normalization)

Convolutional Neural Network and Computer Vision:

CNN, GAN, ...

Recurrent neural network and NLP:

RNN, word2vec, NLP pipeline

- Transformer for Vision and NLP
- Graph neural networks
- Advanced topics:
 - Adversarial Robustness
 - Interpretability

Grading

- Homework (40%)
 - 5 homeworks (tentative)
- Final project (50%)
- Participation (10%)

A	94 to 100	В	83 to 86.99	С	73 to 76.99	D	60 to 66.99
A-	90 to 93.99	B-	80 to 82.99	C-	70 to 72.99	F	0 to 59.99
B+	87 to 89.99	C+	77 to 79.99	D+	67 to 69.99		

Homework

- Around 5 homeworks will be assigned and will be collected via Sakai.
- Late homework will receive a grade of 0.
- You are allowed to work with other students but identical solutions will receive 0.
- Questions regarding HW grade should be addressed to the grader.

Participation

Quiz:

- There will be around 10 in-class quizzes.
- The final participation score would be $10 \times n \times \frac{m}{n}$
- n: the total number of quizzes
- *m*: total scores you got from all the quizzes. Each quiz is worth 0 to 1 point.

Participation

Quiz:

- There will be around 10 in-class quizzes.
- ullet The final participation score would be $10 imes n imes rac{m}{n}$
- n: the total number of quizzes
- *m*: total scores you got from all the quizzes. Each quiz is worth 0 to 1 point.

Extra credit: Paper presentation

- Score: 10 points.
- Check the paper list on the course website.
- Discuss with the instructor.
- Each student can only do it once. Each paper can have at most two presenters.

Final project

- Group of 4 students.
- Form the group before August 30th, and sign up using the shared spreadsheet.
- Four parts:
 - Project Proposal (10%)
 - Project Presentation (30%)
 - Project Paper (50%)
 - Peer score (10%)

Final project - Topics

- Work on some research projects:
 - Solve an interesting problem or new problem with existing method
 - Develop a new algorithm
 - Compare state-of-the-art algorithms on some problems
 - . .
- I'll recommend some topics in the course.

Final project - Proposal

Project Proposal:

- Page limit: 2 (excluding reference)
- Latex template at link
- Contains:
 - Problem Description
 - Related Works
 - Proposed Work
 - Evaluation Metric
 - Reference
- Project Proposal Meeting

Final project - Presentation

Project Presentation:

- All groups will present their final projects in the last two lectures before Thanksgiving.
- Every group member is expected to join the presentation.
- The length of the presentation depends on the number of groups (10–20min).

Final project - Paper

Project Paper:

- Each team must submit a written project report:
 - Introduction
 - Related Works
 - Proposed Work
 - Experiments
 - Conclusion and Future Directions
- It is required to use the NeurIPS Latex style files and submit the report in PDF format.
- The report should be less than 8 pages (excluding references).

Final project - Peer Review

Peer score:

- Each group member should score every person in their group on a continuous scale from 0 (Bad) to 10 (Good).
- Deadline: same as the project paper
- Survey: link
- 2 points penalty for late or no submission

Final project

Important Dates:

Part	Description	Method of Submission	Due Date (Time)
P1	Project Proposal	Sakai	Sep. 25 (11:55PM)
	Proposal Meeting	Hanes 334	Sep. 27 / Sep. 29 (8:00AM-9:15AM)
P2	Presentation Slides	Sakai	Nov. 16 / Nov. 21 (11:55PM)
	Final Presentation	Class	Nov. 17 / Nov. 22 (8:00AM-9:15AM)
P3	Final Report	Sakai	Nov. 30 (11:55PM)
P4	Peer Score	Google Survey	Nov. 30 (11:55PM)

Thank you