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Introduction to Large Language Models

In this course, we will talk about 

• Architectures of large language models (LLMs) and their differences

• Evolution of the LLMs: Pre-training, fine-tuning, RLHF, and Reasoning



A Simplified Intro to Transformer and LLMs

We will review (optional)

• Attention-based encoder and decoder

• Transformers

We will and then discuss

• Bert (optinal) and GPT



Embedding

• How to make the inputs of words as vectors of numbers?

• See the blackboard for an illustration (optional)



watch                       your                       watch

NN NN NN

V A N

Embedding without attention

True label

• A POS is a grammatical classification that commonly includes verbs, adjectives, adverbs, nouns, etc. 

First task: Parts-Of-Speech (POS) classification



watch                       your                       watch
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We need to efficiently exploit previous contexts

Embedding without attention

True label



watch                       your                       watch

Attention
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Embedding without attention

Embedding after attention

True label

Self-attention can effectively
leverage context information



watch                       your                       watch
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Embedding without attention

Embedding after attention

True label
Attention

Self-attention can effectively
leverage context information
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Each token generates a 
• Query  Q
• Key       K
• Value    V

Each token will be mapped
to their embedding space, i.e. if 
the input is “How are you”,
“How” will be mapped to 𝑎!.

To compute the corresponding 
query, key, and value, the attention 
module maintains matrices 
𝑊 % ,𝑊 ' ,𝑊(() 
as parameters of the model.
 

Review of the Self-attention mechanism
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Softmax
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exp(𝑏′!,,)
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Attention
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Attention
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Encoder

We are missing a few notions for the complete architecture
1. The layer norm
2. Multi-head attention
3. Positional encoding
For detail see https://arxiv.org/abs/1706.03762

Because the dimension of the output is the same
as the input, we can stack multiple attention layer
together. And we call this the encoder.



Softmax operation

• How do we finally turn the outputs of the 
encoder into the final token? 
• We apply a softmax layer so that it
outputs the probability of each token
and takes the token with highest
probability.
• In POS, we have around 10 tokens,
but in other NLP tasks such as 
translation or Q&A, we have to deal with
30000+ tokens. 𝑎! 𝑎" 𝑎#

𝑧#𝑧"𝑧!

Encoder

NN and softmax

V A N

watch                       your                       watch

Token Prob
V 0.92
A 0.02
… …



Softmax operation

• Another example is sentiment
analysis, where the output of the
encoder is a binary value, indicating
If the sentiment of the sentence.

• Here, 1 stands for positive, and 0 
stands for negative.

𝑎! 𝑎" 𝑎#

𝑧#𝑧"𝑧!

Encoder

NN and softmax

1

This                           is                       awesome

Token Prob
1 0.999
0 0.001



Other tasks 
• We have shown how to use 

encoder for classifications.
• However, for other tasks such 

as translation or content 
generation, it is not necessary 
the case that each token 
corresponds to a specific 
value.
• For translation and content 

generation, the algorithm 
should know the previous 
generated context and 
generate tokens in a 
sequential manner. 

𝑎! 𝑎" 𝑎#

𝑧#𝑧"𝑧!

Encoder

NN and Softmax

watch                      your                        watch  

mira                          tu                          reloj
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Masked self-attention

Attention Masked attention

The corresponding architecture using masked attention is called the decoder.



Workflow of encoder-decoder

Attention

Masked attention
watch                       your                       watch

[begin]

Cross attention

mira

A translation of “watch your watch” to Spanish
is “mira tu reloj”

You will know what is Cross attention in the next 
slide



Workflow of encoder-decoder

Attention

Masked attention
watch                       your                       watch

[begin]     mira

Cross attention

mira          tu

A translation of “watch your watch” to Spanish
is “mira tu reloj”

You will know what is Cross attention in the next 
slide



Workflow of encoder-decoder

Attention

Masked attention
watch                       your                       watch

[begin]     mira        tu

Cross attention

mira          tu         reloj

A translation of “watch your watch” to Spanish
is “mira tu reloj”

You will know what is Cross attention in the next 
slide



Workflow of encoder-decoder

Attention

Masked attention
watch                       your                       watch

[begin]     mira        tu        reloj

Cross attention

mira          tu         reloj      [end]

A translation of “watch your watch” to Spanish
is “mira tu reloj”

You will know what is Cross attention in the next 
slide



Masked attention

𝑎! 𝑎" 𝑎#

𝑞! 𝑘! 𝑣! 𝑞" 𝑘" 𝑣" 𝑞# 𝑘# 𝑣# 𝑞′

Illustration of Cross Attention



Masked attention

𝑎! 𝑎" 𝑎#

𝑞! 𝑘! 𝑣! 𝑞" 𝑘" 𝑣" 𝑞# 𝑘# 𝑣# 𝑞′

Illustration of Cross Attention



The Transformer Architecture

This is from the original transformer
paper: Attention is All You Need



Language
Models

Source: 
https://arxiv.org/pdf/2304.13712



Language Models

• Why Large Language Models? 



Language Models

• We will introduce two types of language models

• Encoder-only: BERT (Bidirectional Encoder Representations from 
Transformers)

• Decoder-only: GPT (Generative pre-training)



Review: BERT

watch                       your                       watch

Attention

BERT consists of encoders, leveraging the 
embeddings after attention layers to perform 
NLP tasks

Encoder
    

     …...

embedding



Training BERT

watch                       your                    [masked]

Attention

Step 1: Take a large corpus of written text.

Step 2: Mask each token with probability 15%

Step 3: Guess which token the masked one is, 
get the corresponding embedding and put it 
into a linear classifier.

Note that linear classifier is not a powerful 
prediction model, so it requires BERT to train a 
very informative embedding to make the right 
prediction.

Note there is another way to training BERT, 
but we will skip

Token Prob
Step 0.32
Watch 0.21
… …

Linear Classifier



Using BERT for Q&A

Input:
Paragraph: Mary is 9 years old. She lives in Palo Alto, CA, and she has a 
friend named Lori, who lives in Sunnyvale. They like playing music 
instrument together.
Question: Who is Mary’s friend?

See illustrations in the white board about how BERT produces the answer.

My comments on the limitations of BERT
1. Length limit
2. Flexibility 



GPT (Generative Pre-Training)

watch                       your                       watch

Decoder
    

     …...

Masked attention

GPT consists of decoders only.

The architecture allows GPT to better perform 
generative tasks!



Review: workflow of the encoder-decoder structure

Attention

Masked attention
watch                       your                       watch

[begin]

Cross attention

mira

A translation of “watch your watch” to Spanish
is “mira tu reloj”



Attention

Masked attention
watch                       your                       watch

[begin]     mira

Cross attention

mira          tu

A translation of “watch your watch” to Spanish
is “mira tu reloj”

Review: workflow of the encoder-decoder structure



Attention

Masked attention
watch                       your                       watch

[begin]     mira        tu

Cross attention

mira          tu         reloj

A translation of “watch your watch” to Spanish
is “mira tu reloj”

Review: workflow of the encoder-decoder structure



Attention

Masked attention
watch                       your                       watch

[begin]     mira        tu        reloj

Cross attention

mira          tu         reloj      [end]

A translation of “watch your watch” to Spanish
is “mira tu reloj”

Review: workflow of the encoder-decoder structure



Masked attention

watch      your        watch [begin]

mira 

GPT for translation (generative nature)



Masked attention

watch      your        watch [begin]     mira  

mira          tu 

GPT for translation (generative nature)



Masked attention

watch      your        watch [begin]     mira        tu     

GPT for translation (generative nature)

mira          tu         reloj



Masked attention

watch      your        watch [begin]     mira        tu        reloj

mira          tu         reloj     [end] 

GPT for translation (generative nature)
GPT’s Output!



GPT (generative pre-training)

• The training of GPT consists of three steps: 
1. (unsupervised) pre-training. 
2. (supervised) fine-tuning.
3. Alignment.

• In the the pretraining step, we minimize the negative log-likelihood loss of 
the next word prediction.
• We hope that by doing so, the GPT can understand the language and gain 

the corresponding knowledge.
• Then, we let GPT act more like human beings via fine-tuning and 

alignment.



Evolution of GPT

Now, let us talk about the evolution of GPT. Generally speaking, there are two 
phases for this evolution

Phase I - Larger Model & More Data
GPT 1
GPT 2
GPT 3

Phase II - Better Algorithms & High-quality Data
Fine-tuning + RLHF: Instruct-GPT/GPT 3.5/ChatGPT/GPT 4
Multimodal: GPT-4o
Reasoning: o1



Pretraining GPT1

• For pre-training, they used BookCorpus dataset, which contains 7000 
unique unpublished books.

• It contains long texts and allows the model to learn long-range 
information.

• Tokenizer is used. For example, “learning” is divided to “learn” and 
“ing” so that about 30000+ tokens are able to represent the total 
texts in BookCorpus.

• Around 110 million model parameters. (12 layers of stacked 
transformer-decoder block, 512 maximum token length, for others 
see the original paper).



Phase I: From GPT1 to GPT3

• GPT 1 
Model size: 117M parameters, 12 layers, 768-dimensional hidden states, 12 attention heads.
Pre-training data size: 5 GB of text, approximately 7,000 books

• GPT 2
Model size: 1.5B parameters, 48 layers, 1600-dimensional hidden states, 25 attention heads.
Pre-training data size: 40 GB of text (~8 million documents, ~10 billion tokens)

• GPT 3
Model size: 175B parameters, 96 layers, 12888-dimensional hidden states, 96 
attention heads.
Pre-training data size: 570 GB of text (~300 billion tokens)



Prompting

• After pre-training, what can GPT do?

• One of the most popular application of LLMs is prompting.

• Leveraging the superior contextual understanding performance of 
LLMs, the LLM can achieve amazing tasks when prompted correctly!



Prompting

• Zero-shot prompting: Instruct a language model without providing specific 
examples, relying on the model’s inherent understanding of the context.

• Prompt:
• Perform sentiment analysis on the given text and categorize it as neutral, 

negative, or positive.
• Text Input:
• The Recent trip was great.

• Output:
• Sentiment: Positive

Input Output



Few-Shot Prompting
• Few-shot prompting: provide a few examples so that llm can better understand the task.

• Prompt Question 1: Sam has 3 notebooks. He purchases 4 more packs of notebooks, with 5 
notebooks in each pack. How many notebooks does Sam have now?

• Prompt Answer: 23 notebooks

• Prompt Question 2: The distance from city A to city B is 500 miles. Tommy has been driving from 
A to B for 3 hours with a speed of 70 mph. How far away is Tommy from city B?

• Prompt Answer: 290 miles

• Question: The basket has 30 apples. If 20 apples are used for lunch and an additional 6 are 
bought from the market, how many apples are there in the basket?

• Output: 20 apples

Input Output



Chain-of-thought Prompting

• Chain-of-thought prompting: provide some sort of reasoning in the example

• Prompt Question 1: Sam has 3 notebooks. He purchases 4 more packs of notebooks, 
with 5 notebooks in each pack. How many notebooks does Sam have now?

• Prompt Answer: Sam initial notebooks: 3 notebooks. Notebooks from the new packs: 4 
packs * 5 notebooks/pack = 20 notebooks. Now, add these two quantities: 3 notebooks 
(initial) + 20 notebooks (new packs) = 23 notebooks

• Question: The basket has 30 apples. If 20 apples are used for lunch and an additional 6 
are bought from the market, how many apples are there in the basket?

• Output: Initial number of apples in the basket: 30 apples. Apples used for lunch: -20 
apples. Apples brought from the market: +6 apples. Now, add these quantities: 30 apples 
(initial) - 20 apples (used for lunch) + 6 apples (brought from the market) = 16 apples

Input Output



Phase II: Fine-tuning

• However, it is still very far from what we have in ChatGPT.

• It only contains the knowledge, and doesn’t know the right way to 
response to human beings.

• For example:
If you asked a pretrained GPT “Tell me how to cook the steak”, the GPT 
will do the next word prediction, using the previous text the have seen.



Example Pretraining vs Fine-tuning

• GPT-3: No fine-tuning
• InstructGPT: With fine-tuning



Phase II: Fine-tuning

• Fine tuning needs (human-labeled) dataset so that the output can 
follow what human beings desire.

• By designing the corresponding loss with respect to the fine-tuning 
dataset, we can update parameters in the LLM so that the output is 
more desirable.



Phase II: Other Alignment Methods

• We are not done yet, ChatGPT also use RLHF (Reinforcement Learning 
with Human Feedback).

• The most recent version o1 has superior performance on reasoning, 
and is designed based on the chain-of-thought reasoning.

• Let us start to discuss Phase II comprehensively.



Phase II: Overview
Standard pipeline of LLM 
training:

Pretrain: use indiscriminate data 
scraped from the Internet.

Fine tune: higher quality data.

Alignment: data preferred by 
human-beings.



Fine-tuning

• During Supervised fine-tuning (SFT), we want to show the language 
model examples of how to appropriately respond to prompts of 
different use cases (e.g. question answering, summarization, 
translation). 

• The examples follow the format (prompt, response) and are called 
demonstration data. We want to demonstrate how the model should 
behave, and the model clones this behavior.



Fine-tuning dataset

The distribution of prompts used to finetune InstructGPT
https://arxiv.org/pdf/2203.02155



Fine-tuning dataset

• Demonstration data is generated by highly educated labelers who 
pass a screen test. Among those who labeled demonstration data for 
InstructGPT, >= 90% has college degree and more than one-third have 
a master’s degree.

• OpenAI’s 40 labelers created around 13,000 (prompt, response) pairs 
for InstructGPT.



Fine-tuning dataset



Fine-tuning dataset

• The finetuned approach produces much superior results: 

OpenAI showed that the outputs from the 1.3B parameter InstructGPT 
model are preferred to outputs from the 175B GPT-3. 

• This shows that high-quality data is very important!



How do we fine tune

• Fine-tuning is very similar to pretraining

• InstructGPT is fine-tuned using 14,500 prompt-respose pairs (13,000 
from labelers + 1,500 from customers), which is much less than the 
pretraining dataset.

• The loss is the same as pretraining, but only the tokens in the 
response of the fine-tuning dataset are counted towards the loss.



RLHF (Reinforcement Learning with Human 
Feedback)
• Now we will talk about how to use RL to align with human behavior.

• We need human’s feedback when collecting the data.

• This process plays a crucial role in shaping the capabilities of ChatGPT.



Effect of RLHF



General methodology of RLHF alignment

• Step 1: Collect demonstration data. Then fine-tune a pretrained GPT-3 model on this data 
using supervised learning.

• Step 2: In the dataset, labelers indicate which output they prefer for a given input. 
OpenAI collects this type of comparison data, and train a reward model based on the 
preference.

• Step 3: OpenAI Optimizes the policy w.r.t. the reward model using the PPO algorithm 
from Reinforcement Learning (RL) 

• Way to understand this: Think of RL as playing games, after having the reward, you can 
just treat RL training as training the AI to master game playing (like Atari games or alpha-
zero for Go)

• RL for game playing https://www.youtube.com/watch?v=V1eYniJ0Rnk



Reward Model

Attention

Masked attention
watch                       your                       watch

[begin]     mira        tu        reloj

Cross attention

mira          tu         reloj      [end]

Scalar 
reward



Reward Model Continued

• The reward model is trained on a dataset 
of comparisons between model outputs
on the same input.



Reward Model Continued

• Example for reward model data-collection



RLHF

GAE stands for Generalized Advantage Estimation



The effect of RLHF



Reasoning

• So far, we have talked about pre-training, fine-tuning, and RLHF. They 
have no inherent design of logical thinking. 

• It is more like memorizing knowledge and imitate human behaviors.

• GPT o1 introduces a promising solution to LLM reasoning.



Reasoning

• Ground-breaking performance of GPT O1



Reasoning

• Ground-breaking performance of GPT O1



Reasoning

• The development of O1 has been kept confidential, but it is widely 
believed that the training of O1 is based on the STaR paper

STaR: Bootstrapping Reasoning With Reasoning
https://arxiv.org/abs/2203.14465

• It is based on the idea of “chain-of-thoughts”, and improve the 
reasoning performance of LLMs.

• How do we train LLMs for better chain-of-thoughts?

https://arxiv.org/abs/2203.14465


Few-Shot Prompting
• Few-shot prompting: provide a few examples so that llm can better understand the task.

• Prompt Question 1: Sam has 3 notebooks. He purchases 4 more packs of notebooks, with 5 
notebooks in each pack. How many notebooks does Sam have now?

• Prompt Answer: 23 notebooks

• Prompt Question 2: The distance from city A to city B is 500 miles. Tommy has been driving from 
A to B for 3 hours with a speed of 70 mph. How far away is Tommy from city B?

• Prompt Answer: 290 miles

• Question: The basket has 30 apples. If 20 apples are used for lunch and an additional 6 are 
bought from the market, how many apples are there in the basket?

• Output: 20 apples

Input Output



Chain-of-thought Prompting

• Chain-of-thought prompting: provide some sort of reasoning in the example

• Prompt Question 1: Sam has 3 notebooks. He purchases 4 more packs of notebooks, 
with 5 notebooks in each pack. How many notebooks does Sam have now?

• Prompt Answer: Sam initial notebooks: 3 notebooks. Notebooks from the new packs: 4 
packs * 5 notebooks/pack = 20 notebooks. Now, add these two quantities: 3 notebooks 
(initial) + 20 notebooks (new packs) = 23 notebooks

• Question: The basket has 30 apples. If 20 apples are used for lunch and an additional 6 
are bought from the market, how many apples are there in the basket?

• Output: Initial number of apples in the basket: 30 apples. Apples used for lunch: -20 
apples. Apples brought from the market: +6 apples. Now, add these quantities: 30 apples 
(initial) - 20 apples (used for lunch) + 6 apples (brought from the market) = 16 apples

Input Output



Idea of STaR

We call all those thoughts generated from chain-of-thoughts rationales.

1. Let the LLM to generate answer for many questions with chain-of-
thought prompting.

2. For each question, we generate a certain number of examples (say 10), 
and some of the generated solution might be correct, and others might 
be wrong.

3. Collect the rationales for all the correct answers.

4. Finetune on all the rationales that ultimately yielded correct answers; 

5. Repeat



Assigning Reward Models

• Those rationales can be thought of intermediate steps toward 
the correct answer.

• When doing evaluation, the LLM can generate a lot of rationales 
using chain-of-thoughts, and that is the reason the o1 runs 
much slower than GPT-4o

• We can assign reward models to the rationales generated, and 
use search algorithms to find the best response.



Assigning Reward Models



Thank you

Questions?


