STOR 320 Programming I

Lecture 12

Yao Li
Defartment of Statistics and Operations Research
UNC Chapel Hill

Introduction

- Reading
- Chapters 19-21 in R4DS
- Chapters 14-18 in RP4DS
- Chapter 7 in AoRP
- Chapter 4 in FCSPR
- Programming Steps
- Understand the Problem
- Inputs and Outputs
- Create Code
- Test the Code (Simple Case)
- Generalize the Code
- Test Problematic Cases
- Edit Code to Handle Issues
- Consider Efficiency

Setup for Lecture

- Open Tutorial 9
- Packages Required:
- Tidyverse
- Ecdat
- Knit Document As You Go
- Read Introduction
- Prepare Your Minds for the Matrix

Part 1: If Else

- General Construction:
- "If"

- "If-Else"

- ifelse() ifelse(CONDITION,ACTION1,ACTION2)

Part 1: If Else

- Run Chunk 1
- Check if Larger than 0
- If True, Take Log
- Result When $x=3$?
- Result When $x=-3$?
- Run Chunk 2
- Notice the Difference
- If-Else to Handle Errors
- Run Chunk 3
- Situation Not Considered
- Replace BLANK to Lead to Potential Problem

Part 1: If Else

- Run Chunk 4
- Replace BLANK with Different Options and Check
- How Would You Explain this Code to Your Granny?
- Run Chunk 5
- What is the Difference Between y1 and y2?
- Always Look for a Vectorized Solution for Efficiency
- Run Chunk 6
- Nested ifelse() Statements
- How Would You Explain this to your Mother?

Part 2: Loops

- General Construction
- "for" Loop
for (INDEX in VECTOR) \{
ACTION FOR EACH INDEX
$\}$

while (CONDITION) \{

- "while" Loop

```
                                    ACTION UNTIL CONDITION = FALSE
```

\}

- Nested "for" Loops

```
for (INDEX1 in VECTOR1) {
        for (INDEX2 in VECTOR2) {
        ACTION
    }
}
```


Part 2: Loops

- Mental Process
- I Want to Do
for Every
until
- What Type of Object Do You Want Returned?
- Initiate a Starting Point Based on the Desired Output
- Try R Code on Single Instance
- Create the Loop

Part 2: Loops

- Geometric Series

$$
\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r}, \text { for }|r|<1
$$

- Run Chunk 1
- What a did you choose?
- What r did you choose?
- What is the theoretical limit?
- What pattern exists?
- Run Chunk 2
- Choose a and r that work?
- Choose a and r that don't work?
- Modify: if(k>100) break

Part 2: Loops

- Geometric Series (Cont.)

$$
\sum_{k=0}^{\infty} a r^{k}=\frac{a}{1-r}, \text { for }|r|<1
$$

- Run Chunk 3
- Suppose We Want to Save at Every Step
- Why? Picture to Examine the Path of the Summation
- Choose Small K<15
- Choose Large K>50
- What do You Observe?
- How Would You Explain This Code to Your Stranged Brother?

Setup for Lecture

- Open Tutorial 10
- Packages Required:
- Tidyverse
- Ecdat
- Knit Document As You Go
- Read Introduction
- Prepare Your Minds for the Matrix

Part 1: Loops

- Correlation Matrix
- Definition: Matrix Which Shows the Correlation Between Every Pair of Numeric Variables
- Used to Understand Strength of Linear Relationships Between Numeric Variables
- Helpful in Measuring Collinearity
- Run Chunk 1
- Inspect the Variables in Cigar
- Inspect the Correlation Matrix
- Which Variable(s) is Inappropriate for a Correlation Analysis? Why?

Part 1: Loops

- Run Chunk 2
- Run First Half - Loops through Every Combination of Columns and Computes Correlation
- Examine Second Half - Loops Through Every Combination of Columns Excluding the First Column
- Fill in Blanks with Appropriate Indices so Second Loop Works
- Run Second Half
- Run Chunk 3
- Inspect the Variables in HI
- Uncomment to Print Correlation Matrix
- What is the Problem?

Part 1: Loops

- Run Chunk 4
- Observe the Difference Between the Printed Tibbles
- What is the Difference?
- How Would You Explain the First Loop to a Toddler?
- What is cat() doing?
- How Would You Explain the Second Loop to an Infant?
- Remember: There Are an Infinite Number of Ways to Do the Same Thing.

Part 2: SRS

- Important For Simulation Studies
- Known Distributions

Distribution	Density/pmf	cdf	Quantiles	Random Numbers
Normal	dnorm()	pnorm()	qnorm()	rnorm()
Chi square	dchisq()	pchisq()	qchisq()	rchisq()
Binomial	dbinom()	pbinom()	qbinom()	rbinom()

- "d" -> Useful for Plotting Density Curve for Continuous Variables or Probability Mass Function for Discrete Variables
- "p" -> Finds the Probability Less Than Or Equal to a Given Number
- "q" -> Finds Cutoff Points
- "r" -> Generates a Random Sample from the Distribution

Part 2: SRS

- For SRS, Use "r"
- Run Chunk 1
- Scenario for x1: You Ask BLANK Number of Students Their Grades where Grades Follow a Normal Distribution with Mean=82 and SD=2
- Scenario for x2: You Ask BLANK Number of Students to Roll a Fair Die 10 Times and Tell You the Number of 6's that Appeared.

Part 2: SRS

- Sampling From Finite Set of Possible Outcomes
- Run Chunk 2
- Scenario: Flip k Coins
- P (Heads) = BLANK
- $P($ Tails $)=1-B L A N K$
- How would You Explain What the Figure is Showing to a Politician?

