STOR 320 Exploratory Data Analysis

Lecture 8

Yao Li

Department of Statistics and Operations Research
UNC Chapel Hill

EDA Definition

- Read Chapter 7
- Know the Process
- Respect the Process

Question

- Think Creatively
- Quantity and Quality
- General:
 - What type of variation occurs within my variables?
 - What type of covariation occurs between my variables?

Data

- Example: Wages1
 - "Ecdat" R Package
 - Sample from 1976-1982
 - 3,294 Workers
 - 4 variables
 - Variables
 - Experience (Yrs.)
 - Gender (M or F)
 - School (Yrs.)
 - Wage (Hourly in \$)

experience <int></int>	gender <fctr></fctr>	school <int></int>	wage <dbl></dbl>
18	male	3	5.51682632
15	male	4	3.56497766
18	male	4	9.09918107
10	female	5	0.60316541
11	male	5	3.80264284
14	male	5	7.50044646
16	male	5	4.30366672
14	male	5	4.88629309
15	female	6	4.30366672
9	female	6	2.21160651

Verbeek, Marno (2004) A Guide to Modern Econometrics, John Wiley and Sons.

Question

- Variation
 - Variable = Quantity, Quality, or Property You Can Measure
 - Reason: Values Tend to "Vary"
 - Example: Random
 - Categorical:
 - Gender
 - Numerical:
 - Wage
 - Experience
 - School

Question

- Initial Questions
 - Example:
 - What did the Workforce Look Like in Terms of Sex?
 - How Spread Out Were Wages?
 - Where is the Middle 50% of the Sample in Regards to Years of Schooling?

Variation Visualized

•	Examp	ole:	Wages
---	-------	------	-------

Categorical: Gender

gender <fctr></fctr>	n <int></int>
female	1569
male	1725

Variation Visualized

Example: Wages

 n
 avg
 sd
 median
 iqr

 3294
 5.757585
 3.269186
 5.205781
 3.682936

Numerical: Hourly Wage

Variation Visualized

Example: Wages

n	avg	sd	median	q1	q3 <dbl></dbl>	iqr
<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>		<dbl></dbl>
3294	11.63054	1.657545	12	11	12	1

Numerical: School

Unusual Values

- Outliers = Observations Outside the Pattern of the Data
- Due to Error Remove
- Don't Drop or Change Without Justification
- Sensitivity Analysis
- Handling:
 - Drop Entire Row
 - Replace Instance with NA

Unusual Values

- Example: Wages
 - Few People Above 30 \$/Hr
 - Drop Entire Row

```
```{r}
Wage2=Wage %>%
filter(between(wage,0,30))
```

Observations: 3294 3291

Replace Instance with NA

```
\```{r}
Wage3=Wage %>%
mutate(wage=ifelse(wage>30,NA,wage))
```

Observations: 3294 3294

# Question

- Covariation
  - Goal: Explain Covariation
  - Describes the Behavior Between Variables
  - We Often Attempt to Explain Variation Within by Looking at Covariation Between
  - Identify the Signal despite the Noise

#### Data

- Example: diamonds
  - "ggplot2" R Package
  - Sample from 1976-1982
    - 53, 940 diamonds
    - 10 variables

- Variables
  - carat
  - cut
  - color
  - clarity
  - depth
  - table
  - price
  - X, Y, Z

							, ,,		
carat <dbl></dbl>	cut <ord></ord>	color <ord></ord>	<b>clarity</b> <ord></ord>	depth <dbl></dbl>	table <dbl></dbl>	<b>price</b> <int></int>	x <dbl></dbl>	y <dbl></dbl>	<b>z</b> <dbl></dbl>
0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
0.21	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.31
0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63
0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
0.24	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48
0.24	Very Good	Ī	VVS1	62.3	57.0	336	3.95	3.98	2.47
0.26	Very Good	Н	SI1	61.9	55.0	337	4.07	4.11	2.53
0.22	Fair	E	VS2	65.1	61.0	337	3.87	3.78	2.49
0.23	Very Good	Н	VS1	59.4	61.0	338	4.00	4.05	2.39



## Question

- Covariation Questions
  - Example: Wages
    - Does Quality of a diamond affect Price?
    - Does Color Affect Quality?
    - What is the Relationship Between Weight and Price?



Categorical and Continuous: density









```
ggplot(data = mpg) +
 geom_boxplot(
 mapping = aes(
 x = reorder(class, hwy, FUN = median),
 y = hwy
)
)
```





```
`{r}
diamonds %>%
 group_by(cut, color) %>%
 summarize(n=n()) %>%
 spread(cut, n)
 color
 Very Good
 Premium
 Fair
 Good
 Ideal
 <ord>
 <int>
 <int>
 <int>
 163
 662
 1513
 1603
 2834
 224
 933
 2337
 3903
 2400
 312
 2331
 3826
 909
 2164
 4884
 314
 871
 2299
 2924
 Н
 303
 702
 1824
 2360
 3115
 175
 522
 1428
 1204
 2093
 119
 307
 678
 808
 896
```

```
diamonds %>%
 count(color, cut) %>%
 ggplot(mapping = aes(x = color, y = cut)) +
 geom_tile(mapping = aes(fill = n))
```













# **EDA Purpose**

 Purpose of Asking Questions and Exploring Those Questions Using Visualizations and Summaries is to Spot Patterns

- Ask Yourself:
  - Is it Coincidence?
  - How Strong is the Relationship?
  - What Variables May Be Confounding?
  - Do Subgroups Cause the Relationship to Change?
  - How Can You Model the Pattern?

# **Findings**



 Negative relationship between cut and price



 Positive relationship between size and price

# Question

What is the relationship between



and



```
```{r}
diamonds %>%
  summarize(n=n(),avgprice=mean(price),sdprice=sd(price),
             avgcarat=mean(carat),sdcarat=sd(carat),
             correlation=cor(price,carat))
             avgprice <dbl>
                         sdprice

«dbl»
                                     avgcarat

«dbl»
                                                   sdcarat
                                                                correlation
       n
      <int>
   53940
              3932.8
                        3989.44
                                   0.7979397
                                                0.4740112
                                                                 0.9215913
```


Question

- Refined Questions
 - Is the Observed Relationship Spurious?
 - Can I Represent the Relationship Using a Linear Model?
 - Should I Use an Exponential Model to Represent the Relationship?
 - Does Another Variable Exist to Explain the Drastic Change in Spread?

Linear Model

Linear Model

Exponential Model

Exponential Model

Exponential Model

```
``{r}
exp.mod=lm(price~exp(carat),data=diamonds)
diamonds.exp.resid = diamonds %>%
  add_residuals(mod=exp.mod)
ggplot(data=diamonds.exp.resid) +
  geom_point(aes(x=carat,y=resid)) +
  coord\_cartesian(xlim=c(0,2.5),
                    ylim=c(-25000, 25000))
    20000 -
    10000 -
 esid
       0 -
   -10000 -
   -20000 -
         0.0
                 0.5
                        1.0
                                        2.0
                                               2.5
                           carat
```