STOR 320 Exploratory Data Analysis

Lecture 8
Yao Li

D partment of Statistics and Operations Research UNC Chapel Hill

EDA Definition

- Read Chapter 7
- Know the Process
- Respect the Process

Model

Communicate

Question

- Think Creatively
- Quantity and Quality
- General:
- What type of variation occurs within my variables?
- What type of covariation occurs between my variables?

Data

- Example: Wages1
- "Ecdat" R Package
- Sample from 1976-1982
- 3,294 Workers
- 4 variables
- Variables
- Experience (Yrs.)
- Gender (M or F)
- School (Yrs.)
- Wage (Hourly in \$)

```
{r}
` \
Wage=as.tibble(Wages1) %>%
    rename(experience=exper) %>%
    arrange(school)
head (Wage, 10)
```

experience <int>	gender <fctr>	school <int>	wage <dbl>
18	male	3	5.51682632
15	male	4	3.56497766
18	male	4	9.09918107
10	female	5	0.60316541
11	male	5	3.80264284
14	male	5	7.50044646
16	male	5	4.30366672
14	male	5	4.88629309
15	female	6	4.30366672
9	female	6	2.21160651

[^0]
Question

- Variation
- Variable = Quantity, Quality, or Property You Can Measure
- Reason: Values Tend to "Vary"
- Example: Random
- Categorical:
- Gender
- Numerical:
- Wage
- Experience
- School

Question

- Initial Questions
- Example:
- What did the Workforce Look Like in Terms of Sex?
- How Spread Out Were Wages?
- Where is the Middle 50\% of the Sample in Regards to Years of Schooling?

Visualize Summarize

- Variation Visualized
- Example: Wages

gender	
<fctr>	n
female	int>
male	1569

- Categorical: Gender

Visualize Summarize

- Variation Visualized
- Example: Wages

\mathbf{n}	$\underset{\text { avg }}{\text { avb }}$	sd <dbl>	median $<\mathrm{dbb} \mid>$	iqr $<\mathrm{db\mid}>$
3294	5.757585	3.269186	5.205781	3.682936

- Numerical: Hourly

Wage

Visualize Summarize

-Variation Visualized

- Example: Wages

n	avg $<$ int $>$	sd	median $<\mathrm{dbl}>$	q1 $<\mathrm{dbl}>$	q3 $<\mathrm{dbl}>$	iqr <dbl>
3294	11.63054	1.657545	12	11	12	1

Unusual Values

- Outliers = Observations Outside the Pattern of the Data
- Due to Error \Rightarrow Remove
- Don't Drop or Change Without Justification
- Sensitivity Analysis
- Handling:
- Drop Entire Row
- Replace Instance with NA

Unusual Values

- Example: Wages
- Few People Above 30 \$/Hr
- Drop Entire Row

```
``{r}
Wage2=Wage %>%
    filter(between(wage,0,30))
```


- Replace Instance with NA

Question

- Covariation
- Goal: Explain Covariation
- Describes the Behavior Between Variables
- We Often Attempt to Explain Variation Within by Looking at Covariation Between
- Identify the Signal despite the Noise
- Variables

Data

- Example: diamonds
- "ggplot2" R Package
- Sample from 1976-1982
- 53, 940 diamonds
- 10 variables
- carat
- cut
- color
- clarity
- depth
- table
- price
- $\mathrm{x}, \mathrm{y}, \mathrm{z}$

carat <dbl>	$\begin{gathered} \text { cut } \\ <\text { ord }> \end{gathered}$	color <ord>	clarity <ord>	depth <dbl>	table <dbl>	price <int>	$\begin{array}{r} \mathbf{X} \\ <\mathrm{dbl} \end{array}$	$\left\langle\begin{array}{c} \mathbf{y} \\ \text { <dbl } \end{array}\right.$	$\left\langle\mathrm{dbl} \mathbf{Z}^{\mathbf{Z}}\right.$
0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
0.21	Premium	E	SI1	59.8	61.0	326	3.89	3.84	2.31
0.23	Good	E	VS1	56.9	65.0	327	4.05	4.07	2.31
0.29	Premium	1	VS2	62.4	58.0	334	4.20	4.23	2.63
0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
0.24	Very Good	J	VVS2	62.8	57.0	336	3.94	3.96	2.48
0.24	Very Good	1	VVS1	62.3	57.0	336	3.95	3.98	2.47
0.26	Very Good	H	SI1	61.9	55.0	337	4.07	4.11	2.53
0.22	Fair	E	VS2	65.1	61.0	337	3.87	3.78	2.49
0.23	Very Good	H	VS1	59.4	61.0	338	4.00	4.05	2.39

Question

- Covariation Questions
- Example: Wages
- Does Quality of a diamond affect Price?
- Does Color Affect Quality?
- What is the Relationship Between Weight and Price?

Visualize Summarize

- Categorical and Continuous

Visualize Summarize

- Categorical and Continuous: density

Visualize Summarize

- Categorical and Continuous

Visualize Summarize

- Categorical and Continuous

- Categorical and Continuous

```
ggplot(data = mpg) +
    geom_boxplot(
        mapping = aes(
            x = reorder(class, hwy, FUN = median),
            y = hwy
        )
    )
```


Visualize Summarize

- Categorical and Categorical

Visualize Summarize

- Categorical and Categorical

``` ```r}diamonds %>%group_by(cut, color) %>%summarize(n=n()) %>%spread(cut, n)``					
color	Fair	Good	Very Good	Premium	Ideal
D	163	662	1513	1603	2834
E	224	933	2400	2337	3903
F	312	909	2164	2331	3826
G	314	871	2299	2924	4884
H	303	702	1824	2360	3115
I	175	522	1204	1428	2093
J		307	678	808	896

## Visualize Summarize

- Categorical and Categorical

```
diamonds %>%
count(color, cut) %>%
ggplot(mapping = aes(x = color, y = cut)) +
geom_tile(mapping = aes(fill = n))
```



- Categorical and Categorical



## Visualize Summarize

- Continuous and Continuous



## EDA Purpose

- Purpose of Asking Questions and Exploring Those Questions Using Visualizations and Summaries is to Spot Patterns
- Ask Yourself:
- Is it Coincidence?
- How Strong is the Relationship?
- What Variables May Be Confounding?
- Do Subgroups Cause the Relationship to Change?
- How Can You Model the Pattern?


## Findings



- Negative relationship between cut and price

- Positive relationship between size and price


## Question

What is the relationship between
the size of the

and
the price of the


## Visualize Summarize



## Question

- Refined Questions
- Is the Observed Relationship Spurious?
- Can I Represent the Relationship Using a Linear Model?
- Should I Use an Exponential Model to Represent the Relationship?
- Does Another Variable Exist to Explain the Drastic Change in Spread?


## Model

- Linear Model



## Model

- Linear Model



## Model

- Exponential Model



## Model

- Exponential Model
${ }^{\prime}{ }^{\prime}\{r\}$
exp.mod=1m(price~exp(carat), data=diamonds) diamonds.exp.resid = diamonds \%>\%
add_residuals (mod=exp.mod)
ggplot (data=diamonds.exp.resid) +
geom_point (aes (x=carat, $\mathrm{y}=$ resid))



## Model

- Exponential Model



[^0]:    Verbeek, Marno (2004) A Guide to Modern Econometrics, John Wiley and Sons.

