

STOR 320 Modeling

Lecture 16

Yao Li

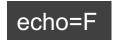
Department of Statistics and Operations Research UNC Chapel Hill

Tutorial 11

- Instructions
 - Download Tutorial Zip
 - Unzip Folder
 - Required Packages
 - library(tidyverse)

library(modelr)

- Open .Rmd File and Knit
- Daily Spanish River Data
 - W = Max Water Temperature
 - A = Max Air Temperature
 - L = River Identifier (31 Rivers)

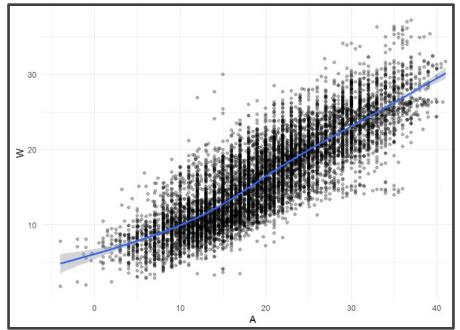


Introduction

- Questions About RMarkdown
 - What Does the Following Code Do When Knitted?

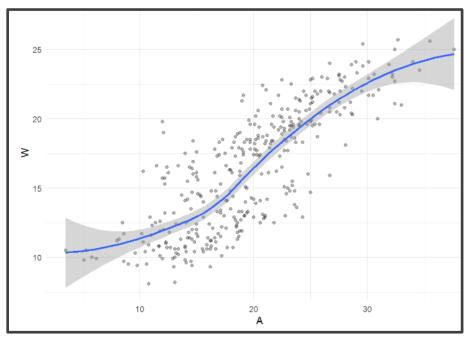
`r length(unique(DATA\$L))`

 What Does the following Code Chunk Option Do When Knitted?



Introduction

- Goal: Build a Model to Predict Max Water Temp Given Max Air Temp
 - What Do You Know About the Relationship of These Variables?
 - Who Would Care About this Relationship?
 - Why Would Someone Want to Predict the Max Water Temp?
 - Why Would this Model Be Useful?


- Run Chunk 1
 - What Do You Notice About the Overall Relationship?

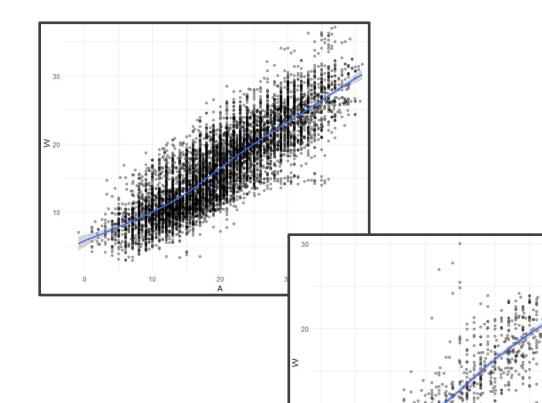
- Do You Think This Relationship is the Same for All Locations?
- Why? message=F

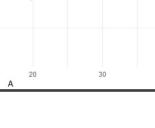
- Run Chunk 2
 - Location is a Numeric Variable
 - What Do You Notice About the Relationship for L==103?

• What do You Notice Now?

LINA

- Chunk 2 Modified
 - Modify Chunk 2 to Create a Function Called WAPlot.func With 1 Argument Location
 - Function Usage: You Specify the Location as an Integer and the Function Outputs a Figure of the Relationship
 - Use Your Function For Three Different Locations
 - Knit the Document to Observe and Compare


- Chunk 2 Discussion
 - What are the Differences in the Relationship Between W and A for the Various Locations?
 - Why do You Think These Differences Exist?
 - How do You Suggest We Handle the Differences?


- Chunk 3
 - Randomly Samples 3 Locations
 - Plant Your Seed and Run Code
 - Usage:
 - anti_join()
 - semi_join()
 - Why Don't We Handpick the Three Locations?

Part 1: Examining the Relationship

- Run Chunk 4
 - Train Plot

• Test Plot

Part 2: Linear Model

• Linear Model

- Simplest Relationship that is Easily Explained
- For every 1 Degree Change in A, W changes by b Degrees
- When A=0 Degrees, the Expected Water Temperature is a Degrees

Part 2: Linear Model

- Run Chunk 1
 - Fits Linear Model to Train Data
 - What is Your Intercept?
 - What is Your Slope?
- Run Chunk 2
 - Saves Predictions to Train/Test

add_predictions(MODEL,var="NAME")

- Run Chunk 3
 - Saves Residuals to Train/Test

add_residuals(MODEL,var="NAME")

Part 3: Polynomial Model

- Polynomial Model
 - "Feature Engineering"
 - Generalized Additive Model
 - Geom_smooth() Fits a GAM when Fitting a Curve
 - Useful for Approximating Nonlinear Relationships
 - Dependent on Degree "k"
 - Goal: Choose Best "k"

Part 3: Polynomial Model

- Formula Object in R
 - Special Notation
 - Helpful Table:

Symbol	Example	Meaning
+	+X	include this variable
-	-X	delete this variable
:	X:Z	include the interaction between these variables
*	X*Y	include these variables and the interactions between them
1	XZ	conditioning: include x given z
^	$(X + Z + W)^{3}$	include these variables and all interactions up to three way
I	I(X*Z)	as is: include a new variable consisting of these variables multiplied
1	X - 1	intercept: delete the intercept (regress through the origin)

 We will Use the I() Function to Create New Variables Based Off Variables We Have

Part 3: Polynomial Model

- Run Chunk 1
 - Fits 2nd Degree Polynomial
 - Fits 3rd Degree Polynomial
 - Fits 4th Degree Polynomial
- Run Chunk 2
 - Obtains Predictions Under the Different Polynomial Models

Part 3: Polynomial Model

- Chunk 3
 - Code Needs Modification
 - Highlight Code

TRAIN4 =TRAIN3 %>%
 add_predictions(poly2mod,var="poly2pred") %>%
 add_predictions(poly3mod,var="poly3pred") %>%
 add_predictions(poly4mod,var="poly4pred")
TEST4 =TEST3 %>%
 add_predictions(poly2mod,var="poly2pred") %>%

```
add_predictions(poly2mod,var="poly2pred") %>%
add_predictions(poly3mod,var="poly3pred") %>%
add_predictions(poly4mod,var="poly4pred")
```

- TRAIN3 -> TRAIN4 and etc.
- Use Ctrl+F (Find and Replace)
 - 'predictions' -> 'residuals'
 - 'pred' -> 'res'

Run Chunk 3 After Modifying

Intermission

- Run Code Chunk
 - save.image() = Used to Save Workspace into .Rdata File
 - load() = Used to Load Workspace from .Rdata File
 - .Rdata = File Extension of R Workspace File (All Objects in Global Environment)

Tutorial 12

- Instructions
 - Download Tutorial Zip
 - Unzip Folder
 - Required Packages
 - library(tidyverse)

library(modelr)

- Open .Rmd File and Knit
- Daily Spanish River Data
 - W = Max Water Temperature
 - A = Max Air Temperature
 - L = River Identifier (31 Rivers)

Part 3: Polynomial Model

- Polynomial Model
 - "Feature Engineering"
 - Generalized Additive Model
 - Geom_smooth() Fits a GAM when Fitting a Curve
 - Useful for Approximating Nonlinear Relationships
 - Dependent on Degree "k"
 - Goal: Choose Best "k"

Part 3: Polynomial Model

- Formula Object in R
 - Special Notation
 - Helpful Table:

Symbol	Example	Meaning
+	+X	include this variable
-	-X	delete this variable
:	X:Z	include the interaction between these variables
*	X*Y	include these variables and the interactions between them
1	XZ	conditioning: include x given z
^	$(X + Z + W)^{3}$	include these variables and all interactions up to three way
I	I(X*Z)	as is: include a new variable consisting of these variables multiplied
1	X - 1	intercept: delete the intercept (regress through the origin)

 We will Use the I() Function to Create New Variables Based Off Variables We Have

Part 3: Polynomial Model

- Run Chunk 1
 - Fits 2nd Degree Polynomial
 - Fits 3rd Degree Polynomial
 - Fits 4th Degree Polynomial
- Run Chunk 2
 - Obtains Predictions Under the Different Polynomial Models

Part 3: Polynomial Model

- Chunk 3
 - Code Needs Modification
 - Highlight Code

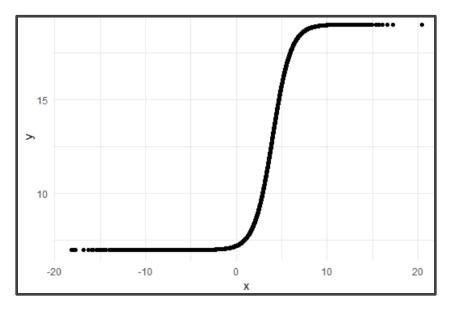
TRAIN4 =TRAIN3 %>%
 add_predictions(poly2mod,var="poly2pred") %>%
 add_predictions(poly3mod,var="poly3pred") %>%
 add_predictions(poly4mod,var="poly4pred")
TEST4 =TEST3 %>%
 add_predictions(poly2mod,var="poly2pred") %>%

```
add_predictions(poly2mod,var="poly2pred") %>%
add_predictions(poly3mod,var="poly3pred") %>%
add_predictions(poly4mod,var="poly4pred")
```

- TRAIN3 -> TRAIN4 and etc.
- Use Ctrl+F (Find and Replace)
 - 'predictions' -> 'residuals'
 - 'pred' -> 'res'

Run Chunk 3 After Modifying

Intermission

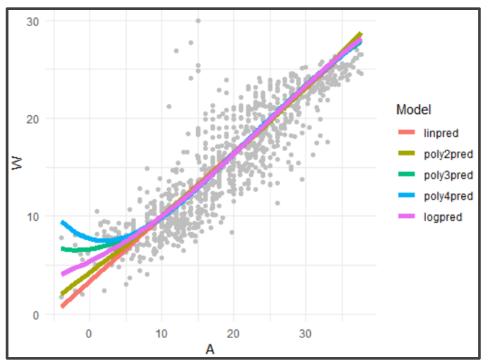

- Run Code Chunk
 - save.image() = Used to Save Workspace into .Rdata File
 - load() = Used to Load Workspace from .Rdata File
 - .Rdata = File Extension of R Workspace File (All Objects in Global Environment)

- Logistic Model
 - "Smart" Model Based On Physical Relationship Between A and W
 - Four Parameters
 - Controls the Shape of the Relationship
 - *a* and *b*
 - *c* and *d*
 - What Shape Do You Think This Function Makes?
 - Idea: Precalculus

- Run Chunk 1
 - Plant that Seed
 - Example Model

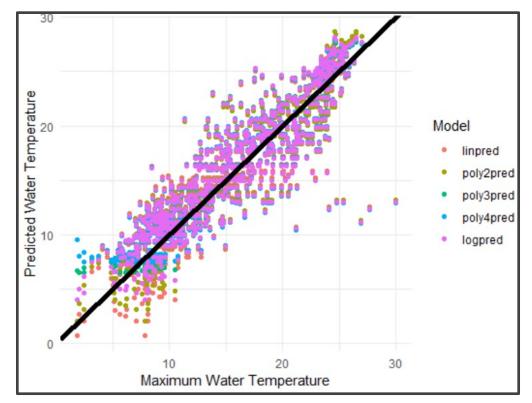
- Parameter Investigation
 - What Does 7 Represent?
 - What Does 12 Represent?
 - What Does 4 Represent?
 - What Does 1 Represent?

- Run Chunk 2
 - Creation of Modeling Function
 - Creation of MSE Function Specific to this Model
- Run Chunk 3
 - Use optim() Function With Smart Starting Values Based on Understanding of The Model
 - Finds Estimates Based on Minimization of MSE



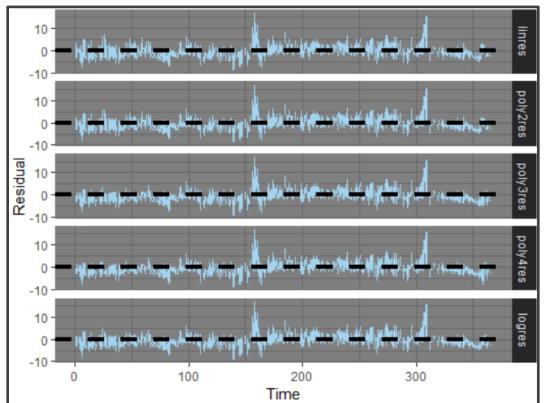
- Run Chunk 4
 - Use Logistic Model Function and Estimated Parameters from optim() to Obtain
 - Predictions
 - Residuals

Part 5: Evaluation by Visualization

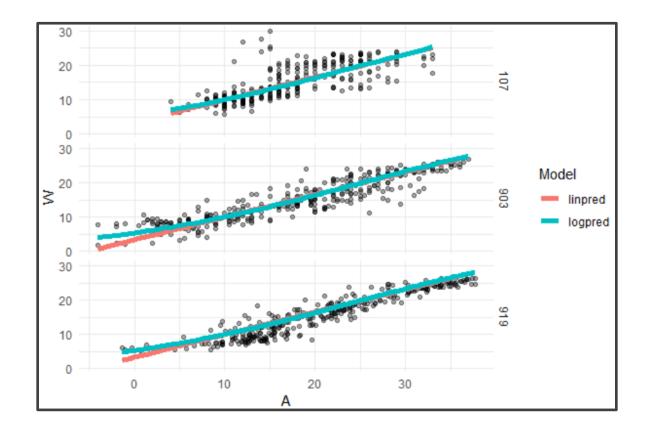

- Run Chunk 1
 - Plots of Different Models
 - What Can We Say About the Different Models?

• Which Model Would You Use?

Part 5: Evaluation by Visualization

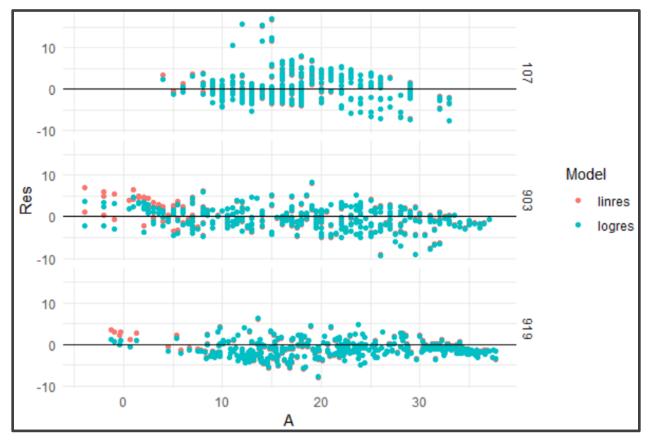

- Run Chunk 2
 - Comparing Predictions vs Actual Maximum Water Temperatures
 - Models Give Similar Predictions

Part 5: Evaluation by Visualization

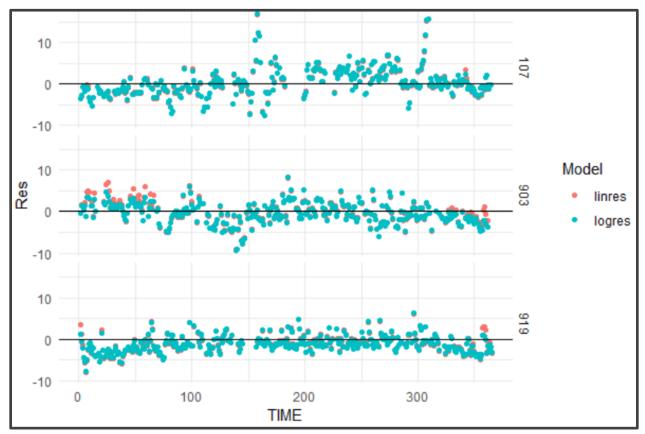

Run Chunk 3

- Shows Residuals Under the 4 Models Plotted Over Time
- What is the Problem?

Part 5: Evaluation by Visualization


- Run Chunk 4
 - Evaluate Models For the Three Locations Separately

CAROLINA


Part 5: Evaluation by Visualization

- Run Chunk 5
 - Evaluate Error For the Three Locations Separately (by A)

Part 5: Evaluation by Visualization

- Run Chunk 6
 - Evaluate Error For the Three Locations Separately (by Time)

Part 6: Evaluation by Numerica

- Run Chunk 1
 - Mean Bias

$$MB = \frac{1}{N} \sum \hat{\varepsilon}_k$$

Mean Absolute Error

$$MAE = \frac{1}{N} \sum |\hat{\varepsilon}_k|$$

Root Mean Squared Error

$$\text{RMSE} = \sqrt{\frac{1}{N}\sum \hat{\varepsilon}_k^2}$$

• MB, MAE, and RMSE are in Degrees Celsius

Part 6: Evaluation by Numerica And Hall

- Summarizing Table
 - Evaluate MB, MAE, and RMSE on Test Data to Choose Best Model Going Forward
 - Sketch of Table We Want

Model	MB	MAE	RMSE
Linear			
Poly(2)			
Poly(3)			
Poly(4)			
Logistic			

• Before Writing Code, Have a Plan for the Output

Part 6: Evaluation by Numerical MORTH CAROLINA Summary

- Chunk 2
 - Run Line-By-Line
 - Think About Ways to Quickly Apply All 3 Functions to All Residuals
- Run Chunk 3
 - Combine rename(), gather(), group_by(), and summarize()
- Chunk 4
 - Change eval=F to eval=T and Knit the File (What is Seen?)

Part 6: Evaluation by Numerica And HILL

My Results Based on My Seed

Model <fctr></fctr>	MB <dbl></dbl>	MAE <dbl></dbl>	RMSE <dbl></dbl>
Linear	0.9534126	2.750323	3.351594
Poly(2)	0.9742415	2.732399	3.344867
Poly(3)	0.9903951	2.706833	3.328889
Poly(4)	0.9920042	2.715366	3.338710
Logistic	0.2613184	3.135313	3.711664

 When Results Are This Close, Always Consider the Most Simple Model