

STOR 320 Programming III

Lecture 14

Yao Li

Department of Statistics and Operations Research UNC Chapel Hill

Loop Functions (Apply Functions)

- Chapter 18 in *R Programming for Data Science*
- lapply(): Loop over a list and evaluate a function on each element
- sapply(): Same as lapply but try to simplify the result
- apply(): Apply a function over the margins of a matrix/data frame

lapply()

• Operates on list, data frame and vectors

lapply(X, FUN, ...)

- Arguments:
 - X: A vector, list, or data frame
 - FUN: Function applied to each element of x
 - ...: Other arguments not in loop

lapply()

<pre>```{r} head(cars, ```</pre>	.5)	\$\$ ►
		<i>⊼</i>
	speed <dbl></dbl>	dist <dbl></dbl>
1	4	2
2	4	10
3	7	4
4	7	22
5	8	16
5 rows		

<pre>```{r} lapply(cars, min) ```</pre>	ŝ		•
\$speed [1] 4	J.	~	×
\$dist [1] 2			

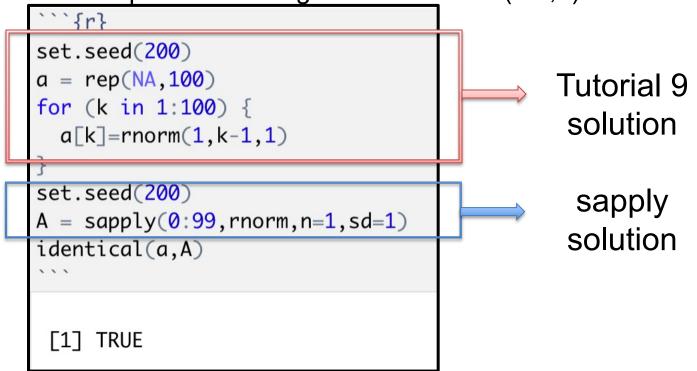
<pre>```{r} lapply(cars, mean) ```</pre>	ŝŝ	•
\$speed [1] 15.4	×.	\$ ×
\$dist [1] 42.98		

sapply()

Like lapply() but simplifies the output

sapply(X, FUN, OTHER)

- Arguments:
 - X: A vector, list, or data frame
 - FUN: Function applied to each element of x
 - OTHER: Other arguments not in loop


<pre>```{r} sapply(```</pre>	cars,	min)	ŝ		•
speed 4	dist 2		R	~	×

<pre>```{r} typeof(sapply(ca ```</pre>	ars, min))
[1] "double"	a × ×

Example

- Use sapply() or lapply() to generate 100 random samples from normal distributions with means of 0 to 99 and save the random samples to A.
 - The k-th component of a is generated from N(k-1,1).

apply()

- Takes data frame or matrix as an input
- Gives output in vector, list or array

apply(X, MARGIN, FUN, ...)

- X: a data frame or matrix
- MARGIN: take a value or range between 1 and 2 to define where to apply the function:
 - MARGIN=1: the manipulation is performed on rows
 - MARGIN=2: the manipulation is performed on columns
 - MARGIN=c(1,2): the manipulation is performed on rows and columns
- FUN: tells which function to apply.

apply()

<pre>M = matrix(1: sum_row = app sum_col = app identical(sum identical(sum))</pre>	oly(M, oly(M, u_row,	1, s 2, s as.in	um) um) itege	-					
[1] TRUE [1] TRUE	Q1 = Q2 = Q3 = MAX = FiveS	apply apply apply apply apply apply	(Cigan (Cigan (Cigan y(Cigan gar =	r, 2, qua r, 2, qua ar, 2, ma	antile, pu antile, pu antile, pu ax)	robs=0.25) robs=0.5) robs=0.75) 2, Q3, MAX)		 ►
	MIN Q1 Q2 Q3 MAX	15.0 26.5 40.0	63.0 70.0 77.5 85.0	23.400 34.775 52.300 98.100	319.00 1053.00 3174.00 5280.25	781.175 2315.300 3914.325	30.6 38.8 62.9 107.6	107.9 121.2 133.2	23.400 31.975 46.400 90.500

Statistical Programming Assignment

- Instructions
 - Download Analysis 3 Zip Folder
 - Unzip Folder
 - Open Analysis 3 Rmd File
 - Knit to HTML
 - Read Introduction
- Three Part Assignment
 - Each Part Self Contained
 - Most Answers Require Copy-and- Paste
 - Where You See COMPLETE You Should Write/Place
 Code
 - Leave Code as is When You See #DO NOT CHANGE

Part 1: Discussion

- Process of Programming
 - Create Practice Example
 - Check Code Works
 - Apply Code to Real Data
 - Check Code Works
 - Create a Function of the Process
- Goals
 - Create a Function that Creates a Factor Variable of Abbreviated Weekdays (Easy)
 - Create a Function that Creates a Plot (Difficult)
- Start Working (15 min)

Part 2: Discussion

- Focus on Traffic Volume (DATA2) and Specific Location ("L103")
- Look at Table
- Goal: Reconstruct this Table

hea	d(OUTPU	Г) #DO N	NOT CHANGE	
##	# A tibł	ole: 6 >	< 3	
##	DAY	median	IQR	
##	<int></int>	<dbl></dbl>	<dbl></dbl>	
##	1 3	85	34	
##	2 4	84	37	
##	3 5	76	34.2	
##	4 6	83	33	
##	5 7	79	38.0	
##	6 10	87	21	T
				t

Part 2: Discussion

- Steps:
 - Given the Day in April, Create Function that Outputs the Associated Row
 - Use the Function in a Loop to Construct the Table
- Two Loops
 - Initiate with NULL
 - Initiate with Empty Tibble
- Look at Lecture on Loops
- Q3 is Tricky
- Start Working (15 min)

Part 3: Discussion

- Functions That Apply Functions Across Dimensions Of R Object
- Doesn't Require a Loop
- Tibbles are Matrices
 - Apply Functions to Rows
 - Apply Functions to Columns (Think Summarize)
- Apply() Function to Matrix
 - To Rows apply(Matrix, 1, Function)
 - To Columns apply(Matrix, 2, Function)
- Start Working (Rest of Class)