

STOR 320 Factors

Lecture 11

Yao Li

Department of Statistics and Operations Research UNC Chapel Hill

Introduction

- Read Chapter 15
- Additional Package
 - > library(forcats)
 - Part of the tidyverse
- For Variables with,
 - Fixed Set of Values
 - Known Set of Values
- Factors Are on a New Level

- Eye Color Distribution
 - Randomly Sample 50 People
 - Distribution via Bar Plot
 - How to Make More Informative?

- Eye Color Distribution (Cont.)
 - Display Eye Colors Absent From Sample

- Eye Color Distribution (Cont.)
 - Display in order

- Survey Results
 - How Would You Describe Dr. Example's Teaching?
 - Magical
 - Alright
 - Regular
 - Inferior
 - Offensive
 - Class of 80 Students Answer End-of-the-Year Survey

- Survey Results (Cont.)
 - Distribution of Results
 - What is Wrong?

- Survey Results (Cont.)
 - Ordinal Categorical Variable

- Urbanicity
 - Classification {1,2,3,4}
 - Sample 1000 Households and Record Their Urbanicity
 - What Would Make this Better?

- Urbanicity
 - Data Dictionary
 - 1 = Metropolitan
 - 2 = Burbs
 - 3 = Rural
 - 4 = Isolated

Factor Variable Architecture

Factor Variables Have Levels

<pre>Height = c("Tall", "Short", "Tall",</pre>							
## [1] "Tall" "Short" "Tall" "Tall" "Short" "Medium" "Short" "Medium" ## [9] "Tall"							
levels(Height)							
## NULL							
print(Height.fct)							
## [1] Tall Short Tall Tall Short Medium Short Medium Tall ## Levels: Medium Short Tall							
levels(Height.fct)							
## [1] "Medium" "Short" "Tall" Default: Alphabetical							

Factor: Level Order

• Level Order May Be Specified

```
Height2.fct = factor(Height, levels=c("Short", "Medium", "Tall"))
levels(Height2.fct)
## [1] "Short" "Medium" "Tall"
print(Height2.fct)
## [1] Tall Short Tall Tall Short Medium Short Medium Tall
## Levels: Short Medium Tall
```


Factor: Label

Levels May Be Labeled

<pre>Height3.fct = factor(Height,levels=c("Short","Medium","Tall"), labels=c("S","M","T"))</pre>						
levels(Height3.fct)						
## [1] "S" "M" "T"						
print(Height3.fct)						
## [1] T S T T S M S M T ## Levels: S M T						
<pre>Height4.fct = factor(Height,levels=c("Short","Medium","Tall"),</pre>						
## [1] "Short" "Not Short"						
print(Height4.fct)						
## [1] Not Short Short Not Short Not Short Short Short Short						
## [8] Not Short Not Short ## Levels: Short Not Short						

Graphic Comparison

Graphic Comparison

Graphic Comparison

Graphic Comparison

Height4.fct = factor(Height,levels=c("Short","Medium","Tall"), labels=c("Short","Not Short","Not Short"))

General Social Survey

University of Chicago

About the GSS

The General Social Survey

Since 1972, the General Social Survey (GSS) has provided politicians, policymakers, and scholars with a clear and unbiased perspective on what Americans think and feel about such issues as national spending priorities, crime and punishment, intergroup relations, and confidence in institutions.

About the GSS

General Social Survey

- Sample Provided in gss_cat
- Factor Variables Included

 Marital 	Social=gss cat				
Race	glimpse(Social)				
 Income Range 	## Observations: 21,483				
 Political Party 	## Variables: 9 ## \$ year				
 Religion 	<pre>## \$ marital <fct> Never married, Divorced, Widowed, Never married, Divor ## \$ age <int> 26, 48, 67, 39, 25, 25, 36, 44, 44, 47, 53, 52, 52, 51</int></fct></pre>				
 Denomination 	<pre>## \$ race <fct> White, White, White, White, White, White, White, White ## \$ rincome <fct> \$8000 to 9999, \$8000 to 9999, Not applicable, Not appl</fct></fct></pre>				
	<pre>## \$ partyid <fct> Ind,near rep, Not str republican, Independent, Ind,nea ## \$ relig <fct> Protestant, Protestant, Protestant, Orthodox-christian</fct></fct></pre>				
	<pre>## \$ denom <fct> Southern baptist, Baptist-dk which, No denomination, N ## \$ tvhours <int> 12, NA, 2, 4, 1, NA, 3, NA, 0, 3, 2, NA, 1, NA, 1, 7,</int></fct></pre>				

Modifying Factor Order

• Summary by Race

<pre>race.summary = Social %>% group_by(race) %>% summarize(n=n(), avg.age=mean(age,na.rm=T), avg.tv=mean(tvhours,na.rm=T)) </pre>							
race.summary							
<pre>## # A tibble: 3 x 4 ## race n avg.age avg.tv ## <fct> <int> <dbl> <dbl> ## 1 Other 1959 39.5 2.76 ## 2 Black 3129 43.9 4.18 ## 3 White 16395 48.7 2.77 levels(Social\$race)</dbl></dbl></int></fct></pre>							
## [1] "Other" "Black" "White" "Not applicab	le"						
levels(race.summary\$race)							
## [1] "Other" "Black" "White" "Not applicab	le"						

Modifying Factor Order

Comparing TV Hours

Modifying Factor Order

- fct_reorder()
 - f = Factor Variable
 - x = Numeric Vector
 - fun = Optional Function If Multiple Values of x for Each Value of f (Default: Median)

Modifying Factor Order

• Example 1: Reorder

23

Modifying Factor Order: Example 2

• Example 2: Reorder

Useful Functions

- Other Useful Functions
 - fct_relevel() = Specify Variable and the Specific Levels You Want in The Front
 - fct_rev() = Specify Variable and Reverses the Level Order
 - fct_infreq() = Order Levels Based on Increasing Frequency
- Combine Functions as Necessary

Types of Ordering

- Different Types of Ordering
 - Nominal = "Arbitrary"
 - Ordinal = "Principled"
- Example: Race vs Income
 - Race Levels are Arbitrary
 - Income Levels are Principled

Modifying Factor Order: Example 3

• Income Levels are Principled

levels(Social\$rincome)

##	[1]	"No answer"	"Don't know"	"Refused"	"\$25000 or more"
##	[5]	"\$20000 - 24999"	"\$15000 - 19999"	"\$10000 - 14999"	"\$8000 to 9999"
##	[9]	"\$7000 to 7999"	"\$6000 to 6999"	"\$5000 to 5999"	"\$4000 to 4999"
##	[13]	"\$3000 to 3999"	"\$1000 to 2999"	"Lt \$1000"	"Not applicable"

Modifying Factor Order: Example 3

Original Boxplot

Modifying Factor Order: Example 3

• Pull `Not applicable` to the front

Modifying Factor Order: Example 3

Level <u>Change + Rev</u>

30

Modifying Factor Levels

- Purpose for Modifying Levels
 - Abbreviate or Better Names
 - Collapse Unimportant Levels
 - Group Categories
- Useful Functions
 - fct_recode() = Rename Levels
 - fct_collapse() = Collapse Levels
 - fct_lump() = Automatically Group Levels

Modifying Factor Levels

Marital Counts

```
Marriage = Social %>%
             count(marital) %>%
            mutate(prop=n/sum(n))
print(Marriage)
## # A tibble: 6 x 3
##
    marital
                     n
                          prop
##
   <fct>
               <int> <dbl>
             17 0.000791
  1 No answer
  2 Never married 5416 0.252
  3 Separated
             743 0.0346
##
              3383 0.157
  4 Divorced
  5 Widowed
               1807 0.0841
  6 Married
##
                 10117 0.471
```


Recode Levels

• Example 1: Recode Levels

```
Marriage2 = Social %>%
            mutate(marital2=fct recode(marital,
                    "Unknown" = "No answer",
                    "Single" = "Never married"
            )) 응>응
            count(marital,marital2) %>%
            mutate(prop=n/sum(n))
print(Marriage2)
## # A tibble: 6 x 4
  marital marital2
##
                             n
                                  prop
   <fct> <fct> <fct> <int> <dbl>
##
  1 No answer Unknown 17 0.000791
  2 Never married Single 5416 0.252
  3 Separated
                 Separated 743 0.0346
##
  4 Divorced
                Divorced 3383 0.157
  5 Widowed
                Widowed 1807 0.0841
                 Married
## 6 Married
                          10117 0.471
```

Collapse Levels

• Example 2: Collapse Levels

```
Marriage3 = Social %>%
             mutate(marital2=fct collapse(marital,
                     Alone = levels(marital) [c(2, 4, 5)],
                     Together = levels(marital)[c(6)],
                     Confused = levels(marital)[c(1,3)]
             )) 응>응
             group by (marital, marital2) %>%
             summarize(n=n()) %>%
             ungroup() %>%
             mutate(prop=n/sum(n))
print(Marriage3)
## # A tibble: 6 x 4
    marital marital2
##
                               n
                                     prop
    <fct>
               <fct>
                           <int>
                                    \langle dbl \rangle
##
  1 No answer Confused
                              17 0.000791
##
  2 Never married Alone 5416 0.252
  3 Separated Confused 743 0.0346
##
## 4 Divorced
               Alone 3383 0.157
## 5 Widowed
              Alone
                            1807 0.0841
## 6 Married
                  Together 10117 0.471
```

THE UNIVERSITY of NORTH CAROLINA

at CHAPEL HILL

Lumping Levels

• Example 3: Lumping Levels

```
Marriage4 = Social %>%
            mutate(marital2=fct lump(marital)) %>%
            count(marital,marital2) %>%
            mutate(prop=n/sum(n))
print(Marriage4)
## # A tibble: 6 x 4
    marital marital2
##
                                 n
                                     prop
           <fct>
##
    <fct>
                           <int>
                                     <dbl>
## 1 No answer Other
                                17 0.000791
## 2 Never married Never married 5416 0.252
  3 Separated Other
                             743 0.0346
## 4 Divorced Divorced 3383 0.157
## 5 Widowed
              Other
                             1807 0.0841
## 6 Married
               Married
                             10117 0.471
```


Lumping Levels

• Example 3: Lumping Levels

```
Marriage5 = Social %>%
            mutate(marital2=fct lump(marital,2)) %>%
            count(marital, marital2) %>%
            mutate(prop=n/sum(n))
print(Marriage5)
## # A tibble: 6 x 4
##
    marital marital2
                                  n
                                       prop
            <fct>
    <fct>
                              <int>
                                      <dbl>
##
  1 No answer Other
                                 17 0.000791
##
  2 Never married Never married 5416 0.252
  3 Separated Other
                              743 0.0346
##
  4 Divorced Other
                              3383 0.157
## 5 Widowed
                              1807 0.0841
              Other
## 6 Married
                Married
                              10117 0.471
```